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ABSTRACT

Essays on Demand Estimation, Financial

Economics and Machine Learning

Pu He

In this era of big data, we often rely on techniques ranging from simple linear

regression, structural estimation, and state-of-the-art machine learning algorithms to

make operational and financial decisions based on data. This calls for a deep under-

standing of practical and theoretical aspects of methods and models from statistics,

econometrics, and computer science, combined with relevant domain knowledge. In

this thesis, we study several practical, data-related problems in the particular domains

of sharing economy and financial economics/financial engineering, using appropriate

approaches from an arsenal of data-analysis tools. On the methodological front, we

propose a new estimator for classic demand estimation problem in economics, which

is important for pricing and revenue management.

In the first part of this thesis, we study customer preference for the bike share

system in London, in order to provide policy recommendations on bike share system

design and expansion. We estimate a structural demand model on the station network

to learn the preference parameters, and use the estimated model to provide insights

on the design and expansion of the system. We highlight the importance of network

effects in understanding customer demand and evaluating expansion strategies of

transportation networks. In the particular example of the London bike share system,

we find that allocating resources to some areas of the station network can be 10 times

more beneficial than others in terms of system usage, and that currently implemented

station density rule is far from optimal. We develop a new method to deal with the
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endogeneity problem of the choice set in estimating demand for network products.

Our method can be applied to other settings, in which the available set of products

or services depends on demand.

In the second part of this thesis, we study demand estimation methodology when

data has a long-tail pattern, that is, when a significant portion of products have zero

or very few sales. Long-tail distributions in sales or market share data have long been

an issue in empirical studies in areas such as economics, operations, and marketing,

and it is increasingly common nowadays with more detailed levels of data available

and many more products being offered in places like online retailers and platforms.

The classic demand estimation framework cannot deal with zero sales, which yields

inconsistent estimates. More importantly, biased demand estimates, if used as an

input to subsequent tasks such as pricing, lead to managerial decisions that are far

from optimal. We introduce two new two-stage estimators to solve the problem: our

solutions apply machine learning algorithms to estimate market shares in the first

stage, and in the second stage, we utilize the first-stage results to correct for the

selection bias in demand estimates. We find that our approach works better than

traditional methods using simulations.

In the third part of this thesis, we study how to extract a signal from option pric-

ing models to form a profitable stock trading strategy. Recent work has documented

roughness in the time series of stock market volatility and investigated its implica-

tions for option pricing. We study a strategy for trading stocks based on measures of

their implied and realized roughness. A strategy that goes long the roughest-volatility

stocks and short the smoothest-volatility stocks earns statistically significant excess

annual returns of 6% or more, depending on the time period and strategy details.

Standard factors do not explain the profitability of the strategy. We compare al-

ternative measures of roughness in volatility and find that the profitability of the

strategy is greater when we sort stocks based on implied rather than realized rough-
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ness. We interpret the profitability of the strategy as compensation for near-term

idiosyncratic event risk.

Lastly, we apply a heterogeneous treatment effect (HTE) estimator from statistics

and machine learning to financial asset pricing. Recent progress in the interdisci-

plinary area of causal inference and machine learning has proposed various promising

estimators for HTE. We take the R-learner algorithm by [73] and adapt it to empirical

asset pricing. We study characteristics associated with standard factors, size, value

and momentum through the lens of HTE. Our goal is to identify sub-universes of

stocks, “characteristic responders”, in which size, value or momentum trading strate-

gies perform best, compared with the performance had they been applied to the

entire universe. On the other hand, we identify subsets of “characteristic traps” in

which the strategies perform the worst. In our test period, the differences in average

monthly returns between long-short strategies restricted to “characteristic respon-

ders” and “characteristic traps” range from 0.77% to 1.54% depending on treatment

characteristics. The differences are statistically significant and cannot be explained

by standard factors: a long-short of long-short strategy generates α of significant

magnitude from 0.98% to 1.80% monthly, with respect to standard Fama-French plus

momentum factors. Simple interaction terms between standard factors and ex-post

important features do not explain the alphas either. We also characterize and inter-

pret the characteristic traps and responders identified by our algorithm. Our study

can be viewed as a systematic, data-driven way to investigate interaction effects be-

tween features and treatment characteristic, and to identify characteristic traps and

responders.
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Introduction

Part I Demand Estimation: Methodology and

Applications

The sharing economy and online platforms have experienced a boom in recent years

that has come with many interesting and challenging questions for their operations.

Part I of this thesis studies demand estimation problems in this domain with the goal

of improving managerial decision making for companies and operation managers. In

particular, Chapter 1 of Part I focuses on bike share system design for London, where

we estimate a demand model for commuters and use it to provide guidance on system

design and expansion for the operating company. Chapter 2 of Part I propose new

estimators for classic demand estimation problems. Our proposal outperforms exist-

ing solutions when the number of features is large and sales data exhibit a long-tail

pattern, that is, when a significant portion of products have zero or very small sales.

High-dimensional features and long-tail pattern are increasingly common nowadays,

especially with the rise of online platforms where millions of products are being of-

fered at the same time, and more and more feature data are collected. The work in

Part I is conducted under the supervision of Prof. Fanyin Zheng.

Customer Preference and Station Network in the London Bike Share Sys-

tem Bike share systems have rapidly expanded across major cities. The type of

bike share systems we study is the dock station system where operating companies
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install stations at certain locations and customers can pick up a bike at any station

with available bikes, and drop it off at any station with empty docks. Studies have

found that bike sharing systems have several benefits, such as public health and en-

vironmental improvements. From the managing company or the local government’s

perspective, however, a number of challenges have arisen. One of the key questions is

the design and expansion of the docking station network. We could view this prob-

lem as a long-term capacity planning one because once installed stations cannot be

easily moved. Chapter 1 of this thesis focuses on station network design and expan-

sion in the particular example of the London bike share system. It is an important

question because if the operating managers or local government want to promote use

and adoption of the system, understanding how the station network affects customer

demand and where to expand the network and install new stations is crucial.

Because bike sharing programs are a relatively new phenomenon, few studies are

available, and in practice, policies that managing companies and local governments

have largely relied on are very ad-hoc. For example, London has been implementing

a 300-meter density rule, which basically requires one docking station being installed

roughly every 300 meters. However, little evidence suggests this policy is optimal or

reasonably good. In Chapter 1, we take an empirical approach to study the problem,

using data from the London bike share system. We estimate a structural demand

model for customers and utilize the model estimates to analyze different counterfac-

tual expansion strategies to provide guidance on the network design and expansion.

We provide novel solutions to endogenous choice set issues and computation bottle-

necks encountered during model estimation. By endogenous choice set problem, we

mean that whether a product is in stock or not is not random but correlated with

how popular or attractive that product is. Failure to correct for this endogeneity

leads to biased estimates and sub-optimal policy recommendations. We propose an

instrumental variable (IV) approach to solve this problem in our empirical exercise,
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which could potentially be used in other contexts with network products.

Machine Learning in Demand Estimation with Long-Tail Data The state-

of-the-art structural demand estimation method has been around for 20 years and has

been the workhorse model for demand estimation in differentiated products markets

in economics. However it has severe drawbacks when dealing with sales data with

long tails, where a significant portion of products have zero or very few sales. In

particular, the most popular demand estimation method proposed by Berry et al.

(1995) (BLP) does not allow products or services with zero sales to be included in

the estimation. Standard practice in empirical applications is to either throw away

low-share products or aggregate products into larger categories. However, neither

solution is ideal in that they will bias estimates, and, more importantly, the biased

estimates will lead to sub-optimal policy recommendations and managerial decisions.

In Chapter 2, we propose a new two-stage estimator that corrects for the bias

caused by long-tail data in BLP estimates with the help of deep learning algorithms.

In the first stage, we propose a novel machine learning procedure, adapted from

deep learning in computer vision and natural language processing, to predict market

shares for all products including the zero-sales ones. The challenge here is that a

product’s market share not only depends on its own characteristics, but also on other

competing products’ characteristics. A naive application of off-the-shelf predictors

is not likely to work well in predicting market shares. Our proposed deep learning

model in the first stage solves this issue by incorporating the structure of the consumer

choice problem. In the second stage, we utilize the predicted shares from the first

stage to correct for the bias in the estimation, by essentially re-weighting different

observations. We find our proposal has better performance than existing solutions

in simulation experiments, especially when the number of features is large. Our

method of correcting for the bias is analogous to the bias correction often used in
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the classic literature of estimating treatment effects. We use the predicted shares in

the first stage to construct weights to correct for the bias in the second stage of the

estimation. This approach is analogous to using an estimated propensity score to

construct weights or matches to correct for bias in treatment effects estimation.

Part II Financial Engineering and Machine

Learning Models in Asset Pricing

Part II of this thesis studies applications of financial engineering models and machine

learning techniques to empirical asset pricing. The field of empirical asset pricing

has been traditionally dominated by approaches and ideas from financial economics.

Traditional financial engineering models tackle issues such as derivatives pricing and

risk management. In Chapter 3, we make connections between the two areas and

study a stock trading strategy based on signals from a particular type of option

pricing models in financial engineering, namely, rough volatility models. Thanks

to the breakthrough of computing power and machine learning algorithms, a large

amount of interests and opportunities have arisen in applying ideas from machine

learning to finance in both industry practice and academic research. In Chapter 4,

we study factor models in empirical asset pricing through the lens of heterogeneous

treatment effects (HTE), an interdisciplinary subject involving causal inference and

machine learning. The work in Part II was conducted under the supervision of Prof.

Paul Glasserman.

Buy Rough, Sell Smooth A recent line of research has found evidence that stock

price volatility is rough, in the sense that a fractional Brownian motion (fBM), in-

stead of an ordinary Brownian motion, drives the dynamics of volatility, which could

yield rougher volatility evolution paths than models based on ordinary Brownian mo-

4



www.manaraa.com

tion. Two primary pieces of empirical evidence support rough volatility: the time

series behavior of realized volatility, and an empirical regularity of option-implied

volatility at short maturities that turns out to be well explained by roughness. In

Chapter 3, we connect rough volatility models to empirical asset pricing and study

the question of whether the stock market cares about and responds to roughness

in volatility. In particular, we focus on a trading strategy of buying stocks with

the roughest volatility and shorting stocks with the smoothest volatility using two

different measures of roughness, namely, realized and implied roughness. We find

the proposed buy-rough-sell-smooth strategy based on implied roughness generates

significantly positive annual returns of 6% or more, which standard factors cannot

explain. We further investigate why the strategy works. We conclude that it is not

coming from roughness being able to predict future earnings surprises. Rather, we

attribute the profitability to near-term idiosyncratic event risk, based on studying

the impact of corporate earnings announcements on the strategy performance.

Heterogeneous Treatment Effects in Asset Pricing The intersection of causal

inference, econometrics, and machine learning has been an exciting research area

lately, thanks to an increasing amount of available data and the advances in black-

box predictive algorithms. The key issue here is that we want to utilize machine

learning algorithms to relax parametric assumptions in part of our model without

sacrificing the ability to conduct valid statistical inference on the causal parameters

we care about. Chapter 2 falls into this literature as well in the sense that we uti-

lize machine learning algorithms to solve one challenge in the identification of key

causal parameters of interests. In Chapter 4, we focus on another problem tackled

by researchers in causal inference and machine learning, HTE estimation, and apply

one particular HTE estimator proposed by [73] to empirical asset pricing. Our work

in this chapter is a novel empirical study applying HTE methods in finance, which
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complements the theoretical studies that are mainly aimed at domains such as per-

sonalized medicine and program evaluations. We bring newly developed techniques

from causal inference and machine learning to provide an interesting new perspective

to empirical asset pricing. Our angle can be viewed as a middle ground between the

traditional linear approach and simple applications of black-box machine learning

algorithms to predicting stock returns.

In particular, in Chapter 4, we cast the traditional linear regression model that

studies how firm characteristics predict future stock returns in the framework of

causal inference and treatment effect estimation. The analogy is that we select one

focal firm characteristic as the treatment variable, and its effect or impact on future

stock returns is the treatment effect we are going after. With the help of HTE

estimation, we relax the homogeneous treatment effect assumption that the treatment

characteristic affects future stock returns exactly the same way for all stocks, which

is implicitly assumed by the traditional regression approach. Specifically, we use

the R-learner algorithm coupled with the state-of-the-art machine learning algorithm

gradient boosted trees to estimate HTE for each stock. Based on our fitted HTE, we

characterize two subsets of stocks: we call one subset the characteristic responders,

which have the largest treatment effect, and we call the other subset the characteristic

traps, which consist of stocks whose future returns are the least responsive to the

treatment characteristic. Evaluating how accurate our fitted HTE is and whether or

not the resulting characteristic responders and traps are useful in practice is difficult

because we can never observe the true treatment effects in the data. To overcome

this challenge, we design a long-short of long-short test to evaluate the effectiveness of

our estimates. In our empirical study, we focus on the most standard characteristics

value, size, and momentum as treatment variables. We set one characteristic at a

time as the treatment variable and use the long-short of long-short test to confirm

that the effect of treatment variable on future stock returns in the characteristic

6



www.manaraa.com

responders subset are indeed larger than the effect in characteristic traps during our

test period. The differences in the treatment effects between the two subsets are

statistically and economically significant. Unlike black-box predictors, we are able

to provide some nice interpretations of the HTE estimates and generate insights on

return predictability of firm characteristics.
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Part I

Demand Estimation: Methodology

and Applications
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Chapter 1

Customer Preference and Station Network in the London

Bike Share System

1.1 Introduction

Bike share systems have rapidly expanded across major cities of the world. Cities

such as New York, London, and Paris have all introduced this new shared transport

service in the past few years. There are many benefits associated with the bike share

system. Studies have found that bike sharing systems have positive effects on public

health by creating a large cycling population [36, 88]. Researchers have also shown

that there are significant environmental gains from introducing the systems [36].

From the managing company or the local government’s perspective, however, there

are a lot of challenges and room for improvement in managing the bike share systems

[68]. One of the main challenges is the design and expansion of the docking station

network [71, 86]. For example, if the manager’s goal is to maximize bike usage on the

network and capture as well as possible the benefits of the new transport service, it

is important to know where to expand the network and where to install new stations.

Since bike sharing programs are a relatively recent phenomenon, few studies have

focused on the network design and expansion of the stations. In practice, managing

companies and local governments have largely relied on ad hoc rules and policies. For

example, the city of London has been implementing a 300-meter density rule, which

states that two neighboring docking stations should be, at most, 300 meters away

from each other across the city [86]. Given the potential customer demand variation
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across the city, it is not clear whether the uniform density rule is optimal. In New

York city, the Citi bike network focused primarily on building a high-density network

in the downtown area in the first few years since its introduction. After many major

expansions of the network, the system still covers only the downtown and midtown

areas in Manhattan, and very few places in uptown Manhattan and Brooklyn.

In this chapter, we provide guidance on the network design and expansion question

of the bike share system using the example of the system in London. The analysis is

conducted in two steps. First, we estimate customer demand on the station network

using system usage data. We take the structural estimation approach for the following

reason. Since the objective is to provide network design and expansion recommenda-

tions to managers, we need a model of customer behavior to recover the preference

parameters in order to evaluate different counterfactual expansion strategies. With-

out a structural model, simple regression analyses do not recover customer preference

parameters, and therefore we would not be able to use the estimated parameters to

evaluate counterfactural expansion and design experiments of the network.

To model customer demand, the natural way to go is to treat the docking stations

as products and to assume that customers choose the stations based on the utility they

gain from using the bikes at those stations [63, 81]. This approach is problematic,

however, because it leaves out the important network structure between stations.

Customers will choose the origination station only if the destination station is also

attractive. In other words, customers are choosing the route or the link on the network

between stations instead of the individual stations. For instance, if there is only one

station in the network, demand is going to be very low because customers will be

able to make only trips originating and ending at the same station. When a node

has a lot of links on the network, and the links are attractive routes to the customer,

however, the demand at that station is going to be substantially higher. This is what

we refer to as network effects in this chapter. Those effects can be captured only if
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we take the entire network into account, instead of treating stations as independent,

when modeling the choices of the customers.

In light of the importance of the network effects in the current setting, we estimate

customer demand for each origination and destination station pair instead of for

individual stations. In other words, we study customers’ preferences on the routes

generated by a station network. This creates two challenges in the estimation. The

first one is the endogeneity problem of the choice set. The choice set of the customer

is endogenous because whether a station is in the choice set depends on whether it

has bikes or docks available. The availability of bikes and docks at a station can

be correlated with unobserved characteristics of the station, which then give rise to

the endogeneity issue. The problem is particularly difficult to solve in a network

setting in which the conventional instrumental variable approach does not apply.

Using reduced-form regression evidence, we first show that this problem leads to

biased estimates and unreasonable policy recommendations. Then, we propose a novel

instrumental variable solution to this problem and show that our solution removes

the bias in the parameter estimates and provides reasonable policy recommendations.

The second challenge in estimation is the computational difficulty given the extremely

high number of routes in the network. We reduce the computational burden by

dividing the coverage area into blocks and model demand on the block level. We

argue that this approximation is reasonable given the objective of evaluating long-

term expansion strategies.

In the second step, we use the estimated model and customer preference parame-

ters to provide insights into the design and expansion of the docking station network.

This is done through three counterfactual analyses. In the first counterfactual, we

evaluate a particular expansion proposal by the local government and predict net-

work usage increase after the expansion. It demonstrates the practical insight that

our study can provide to managers of such bike share systems. In the second and
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third counterfactual, we generalize the insight and highlight the importance of net-

work effects in studying customer demand on bike share systems. We compute the

effect of adding stations and adding bikes or docks to different parts of the network

in the two counterfactuals, respectively. First, we show that increasing density in

the city center leads to usage increase ten times as high as that from increasing the

scope of the network. This shows that the 300m density rule in the London system

is far from ideal. Second, we decompose the variation in usage increase at different

locations of the network. We identify two types of network effects and show that

network effects play a key role in understanding demand variation across the network

and evaluating the expansion strategies.

Despite the importance of the design and expansion of the station network, there

are very few empirical studies on this topic. The closest to our paper is [63], who

study the demand of the bike sharing system at the station level in Paris. The main

difference is that our paper focuses on route-level demand, which brings the network

effect into the analysis. This allows us to evaluate the changes to the network of

stations by usage throughout the entire system instead of focusing on usage at indi-

vidual stations. Our paper is also closely related to several studies analyzing the local

demand and rebalancing of bikes in the Citi bike system in New York [74, 81]. The

main difference is that we model customer behavior and recover preference parame-

ters in the structural model, which allows us to compute counterfactual predictions

and provide prescriptive recommendations to managers. Our work also contributes

to the broader literature of ride sharing and car sharing, with a focus on the spatial

network structure of customer demand [61].

There are many studies in the transportation literature that estimate origination-

destination traffic demand [8, 15, 11, 85]. Some of the studies use similar discrete

choice modeling tools to study customer behavior [8, 15]. However, those studies

have mainly focused on real time traffic predictions, instead of recovering causal

12



www.manaraa.com

customer preference parameters and applying the estimated model to provide long

term policy recommendations. In addition, our model is much more flexible as we

allow for unobserved route characteristics and customer heterogeneity, compared with

the relatively simple models commonly used in this literature [8, 15].

The main estimation method we use in the analysis is based on the classic demand

estimation framework introduced by [20] and the MPEC algorithm in [83]. The

new method we develop to account for the endogeneity problem of the choice set

relies on the network structure. The intuition of this method is related to that of

the identification strategy in [23]. The method also contributes to the literature on

estimating demand with endogenous stock-out products studied by [69] in operations

management and by [33] in economics.

The main contribution of this chapter is threefold.

1. Practical guidance Our analysis provides important practical guidance to man-

agers and the local government in evaluating network expansion strategies in London.

With similar data from other cities, the framework can also be easily applied to other

bike share systems to understand customer demand and evaluate expansion proposals.

2. General insights Our analysis highlights the importance of network effects in

studying customer demand on a transportation network or products with a spatial

aspect. We provide strong evidence to show that treating bike stations as individual

products is far from sufficient. The structure of the network–i.e., where the connecting

nodes are and what the weight is on each link–plays a significant role in determining

the demand on the each node.

3. Methodology We illustrate the problem of endogenous choice set using regres-

sion analyses. We show that the endogeneity problem leads not only to biased esti-

mates, but, more importantly, to unreasonable policy recommendations. We provide

a novel instrumental variable approach to address the problem in a spatial network

setting. The method can be easily applied to studying demand for other network or
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spatial products.

1.2 Background and Data

1.2.1 Background

The bike share system in London, “Boris Bikes”, was introduced in 2010. Like many

bike share systems in major cities around the world, “Boris Bikes” went through

a few major expansions after the initial launch.1 There are calls and proposals to

expand the station network further–for example, to central and south Islington and

Hackney, the borough of Southwalk. “Boris Bikes” has been an important part of

the local government’s urban development program. In the 2016 mayoral election,

both Labour and Conservative party candidates pledged to expand “Boris Bikes” and

make London more bike-friendly.2

1.2.2 Data

The data we use in the analysis consist of four parts.

1.2.2.1 Stations and trips

First, we have data on the stations of the London bike share system and the trips

made by customers on the system in 2014. There are 724 bike stations on the network.

For each station, we observe the exact location (longitude and latitude coordinates)

and the size of the station (total number of docks). The system covers an area of

about 8 kilometers by 16 kilometers at the center of the city.3 For the trip data, we

1Source: https://tfl.gov.uk/info-for/media/press-releases/2013/december/

mayor-launches-huge-expansion-of-flagship-barclays-cycle-hire-scheme

2Source: https://www.theguardian.com/environment/bike-blog/2016/apr/14/

london-mayoral-election-qa-on-cycling-policy-with-the-main-candidates

3We provide a map of the Greater London administrative area with the system coverage area in
the Online Appendix.
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observe the location (longitude and latitude coordinates) of the origination station

and the destination station of each trip, as well as the starting and ending time of the

trip. There are about nine million trips in total. We find that there is huge variation

in the number of trips across routes, where a route is defined as a directional link

between two stations. Some routes have thousands of trips, while others have only

one trip.4 It appears that, similar to retail sales data, the distribution of usage has

a long tail, where many routes have very low usage, while a few routes have very

high usage. There are also many routes with zero usage throughout the year. In the

subsequent analysis, we follow the standard practice of including only routes with

positive usage. In the structural estimation, in particular, we aggregate routes across

nearby stations, which alleviates the long tail issue.

1.2.2.2 Availability Snapshots

Second, we have station snapshot data for each station every five minutes through-

out 2014. The snapshots contain information about the number of bikes and docks

available at each station. To demonstrate the variation in the snapshot data, we

compute the following availability measures during the busiest time windows for the

system: weekday morning rush hour (5:30am-9:30am) and evening rush hour (4:00pm-

8:00pm). We define the bike availability measure as the percentage of time a station

has at least five bikes available–i.e.

bike avail =
num of 5-min intervals with >= 5 bikes

Total num of intervals
.

Similarly, we define the dock availability measure as

dock avail =
num of 5-min intervals with >= 5 docks

Total num of intervals
.

Similar to [63], we use five as a threshold to allow for the possibility of broken bikes

and docks. We present the summary statistics in Table 1.1. For all four time windows

4See the Online Appendix for detailed summary statistics.
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and two availability measures, there is substantial variation in bike and dock avail-

ability across stations. This shows that availability conditions vary a lot at different

locations, which is important to take into account in the subsequent analysis.

Time Window Availability Mean sd Min 25% median 75% Max

morning rush hour bike availability 0.73 0.21 0.10 0.58 0.77 0.90 1.00
evening rush hour bike availability 0.74 0.16 0.19 0.63 0.76 0.88 1.00
morning rush hour dock availability 0.80 0.14 0.27 0.71 0.83 0.91 1.00
evening rush hour dock availability 0.84 0.13 0.28 0.77 0.87 0.94 1.00

Table 1.1: Summary Statistics for Long-term Availability Measure

1.2.2.3 Google Data

We collect four sets of data from Google API.

This first set is the biking distance data. We use ij to denote a route from station

i to station j. For each route ij, we collect the biking distance data from Google

Maps using the best biking route from location i to j according to Google. We refer

to this distance as the biking distance for the rest of the chapter.

Second, in addition to the biking distance, we also collect the data on the change

of elevation along each route ij. A standard measure for the degree of inclination

in transportation is the slope grade. Google Maps data allows us to divide each

route ij into many short segments, and compute the grade for each segment. We

define two features for each route: 1) AvgAscendGradeij: the average grade among

the ascending segments of route ij, and 2) AscendPercentageij: the proportion of

ascending segments on routes ij. We provide calculation details in Appendix A.1.

Third, we collect the data on other travel options in the city, in order to understand

the outside options the customers face when choosing whether to use the bike share

systems. We collect the data on two features, the distance and the travel time, for

each of the two alternative travel options, driving and public transportation. We find
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that the travel time is highly correlated with the distance in the data, so we only use

the distance feature in the analysis from now on.

Fourth, we collect Google Places data in London. This dataset provides the longi-

tude and latitude coordinates of 97 categories of places that are identified on Google

Maps, including subway stations, government office buildings, schools, restaurants,

etc.5 We group 97 Google Place categories into ten general categories, food, health,

religion, entertainment, stores, government offices, transportation, education, finance

and others, and use these general categories in our analysis. Detailed definition of

the groups and the summary statistics are presented in the Online Appendix.

We divide the coverage area of the bike share system into 200 by 200 meter

squares and count the number of each Google place category in each square. Since

many categories have zero count for more than 40% of the squares, it can be more

informative to use the total counts instead of the counts for each category in the

analysis. In addition to this observation, we also calculate the correlation between

each pair of category counts, including the total counts. 6 We find that the average

pairwise category correlation among the ten categories of Google places is 0.29, and

the total Google place count is highly correlated with any of the ten category counts,

with an average correlation of 0.56. This observation implies that using total Google

place count in the analysis can be a good approximation of using all ten category

counts.

1.2.2.4 Census

Finally, we use demographic data from the 2011 Census, which is more complete than

the data from more recent years. The data includes population, income, age, gender,

5Both the data content and the category used in Google Place data change over time. Unfor-
tunately, historical data are not available. The set of the data we use was scraped in February
2017.

6We present the correlation matrix in the Online Appendix.
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and related demographic information, measured for each Lower Super Output Area

(LSOA) in London.7 LSOA is the smallest census unit with accurate data, and there

are, in total, 4835 LSOAs in the London city. Our 724 stations in the bike share

system cover 430 LSOAs located in the center of the city.8

1.2.3 Preliminary evidence

To motivate our analysis, we present several pieces of preliminary evidence about the

usage of the system before going into details about the model and the estimation.

The evidence comes directly from the data and therefore is model-free.

First, we find that 75% of the total usage of the London bike share system is

on weekdays. Since weekday and weekend usage patterns can be very different, and

from the local managing company’s perspective, the local population’s weekday usage

matters more, we focus on weekday usage for the analysis. Within the weekday usage

data, we find that 60% of the total trips occur during the morning rush hour (5:30am

to 9:30am) and the evening rush hour (4pm-8pm) on weekdays. Moreover, the local

government clearly makes the commuters the main beneficiaries when discussing plans

for expanding the network [54]. For these reasons, we restrict our analysis to rush

hour usage.

Next, we provide some evidence on the spatial pattern of the system and its usage.

Figure 1.1 shows the usage pattern at 9:30am on a weekday morning in London. Each

circle represents a docking station. The shade of the circle corresponds to the number

of bikes available divided by the total number of docks at the station, ranging from

black, which indicates that the station is full of bikes, to white, which indicates that

the station is completely out of bikes.

7The data were downloaded from the local government’s website, https://data.london.gov.
uk/dataset/lsoa-atlas

8We provide the summary statistics for both the 430 covered LSOAs and all 4835 LSOAs in the
Online Appendix.
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Figure 1.1: End of morning rush hour system status

Figure 1.2: End of evening rush hour system status
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Figure 1.1 shows that, towards the end of the morning rush hour, many stations

around the city center are full, and many of the stations in the more residential areas

in the outer part of central London are empty. This implies that people pick up bikes

from where they live in the morning, commute to work, and return bikes near where

they work in the center of the city. The pattern of traffic during morning rush hour

is generally from the outer part of central London to the very center of the city. We

see the opposite direction in the usage pattern during evening rush hour, captured

in Figure 1.2. This is a snapshot of the system around 8pm on the same day. Figure

1.2 shows that a lot of bikes have been picked up in the very center of the city and

returned to the more residential areas around the outer part of central London after

the evening rush hour commute. This directional pattern of traffic on the network

during rush hours will also show up in our estimation results presented later. More

importantly, we will rely on the directional pattern to construct our instruments in

order to identify the preference parameters in the structural model.

In Figures 1.1 and 1.2, another pattern in the data concerns the density of bike

stations. The station density is slightly higher in the very center of the city but is

more or less uniform otherwise. This is partly due to the 300m rule between stations

imposed by the local transportation department, Transport For London (TFL). We

will discuss whether the policy is reasonable, as well as its implications for how to

expand the network when discussing the counterfactual analyses.

The last piece of evidence concerns the relationship between usage and one key

route characteristic that we find in the data: route distance. We plot the average

usage per route against route distance in Figure 1.3, which shows that, at first, usage

increases very fast as distance increases. This is because as distance increases, more

potential customers would prefer biking to walking. The peak usage occurs around

1.5 kilometers (km). As distance increases further, usage decreases quickly, as more

potential customers would prefer other forms of transportation to biking. As shown
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Figure 1.3: Average usage per route vs. route distance
Usage is measured in number of trips per route, and route distance is measured in meters.

Peak usage around 1km.

in the estimation results in Section 1.4, route distance is a key characteristic that

determines usage in the bike share system. The increasing and then decreasing usage

suggests a non-linear preference pattern for route distance, which will prove to have

important implications for network design and expansion. We will revisit this point

in the counterfactual discussion.

The above three pieces of model-free evidence provide guidance to the modeling

choices in our structural estimation analysis. Note that this evidence alone is not

sufficient to provide prescriptive policy recommendations we are interested in. They

are merely correlation patterns in the data. To understand customer preferences

and therefore predict their choices under different counterfactual scenarios where the

network is expanded, we need a choice model and an estimation procedure to recover

the preference parameters when describing the model.
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1.3 Choice model

In this section, we present the structural choice model. We do not argue that struc-

tural estimation is the only approach to understanding customer demand. But the

reason that a structural model is necessary in our setting is as follows. The goal of

the analysis is not just to understand customer demand, but, more importantly, to

provide the managing company and local government with prescriptive policy recom-

mendations in terms of station network design and expansion. Therefore, we would

like to provide out-of-sample predictions that might be far from the observed data.

To achieve this goal, we need to rely on a behavioral model that describes how po-

tential customers make commuting decisions, to recover the preference parameters

in the model, and to use the model to compute counterfactual predictions. Without

a structural model, the parameters estimated from reduced-form regressions are not

interpretable and can not help us make counterfactual predictions.

The model consists of two parts. The first part is a classic multinomial logit model

that describes how customers choose between biking on a set of routes and using an

outside commuting option. The second part consists of feeding the derived choice

probabilities from the multinomial logit model into a density model that captures the

differences in the number of potential customers in different geographic areas. We

allow all parameters in the model to have different values for customer demand during

the morning rush hour (MR) and the evening rush hour (ER). But for simplicity,

we do not carry the MR and ER subscripts in the model.

We now discuss the model in more detail. Let Uijkl be the utility that a customer

who wishes to travel from location k to location l gets from using the bike share

system to cycle from station i to station j, if bikes are available at station i, and

docks are available at station j. Then, we have

Uijkl = X ′
ijklβ + ξij + εijkl ∀ij ∈ Ckl (1.1)
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Xijkl is a vector of characteristics of route ij for customer traveling from k to l.

It includes three types of characteristics in addition to a constant. The first type

includes two terms: log d(i, j), the logarithm of the biking distance between stations

i and j, and max{log d(i, j) − log b, 0}, which captures the potentially non-linear

distance preferences for long distance routes. We define long distance routes as those

longer than 1.5 km–i.e. b = 1.5. This is natural in light of the fact that 1.5 km is

the peak point in Figure 1.3. We provide robustness checks for other values of b in

the Online Appendix. The second type of covariates are the two elevation features of

route ij, AvgAscendGradeij and AscendPercentageij as defined in Section 1.2.2.3.

They capture how physically demanding it is to bike from i to j. Third, Xijkl also

includes two walking distance variables: d(k, i), the walking distance between the

customer’s origination location k and the starting station i, and, similarly, d(j, l), the

walking distance between the ending station j to the customer’s destination location

l. Although walking distance is not the focus of our study, we include them since

other studies in the literature show that it is an important factor for demand [63].

Notice that unlike [63] who study station level demand and, therefore, only have the

walking distance between the origination location of the customer and the starting

station in their model, we include walking distance on both ends of the route.

ξij are unobserved route characteristics, which can include whether route ij is

bike-friendly, whether there is a bike lane, or other features which make ij more or

less attractive. εijkl are idiosyncratic error terms that are independent and identically

distributed and follow extreme value distribution.

Since we differentiate customers only by the origination location k and the des-

tination location l, we index customers by kl. Customer kl chooses from a set of

possible routes ij and an outside option to maximize her utility. The choice set of

all biking routes for customer kl is denoted by Ckl, which includes all routes with

origination station i within walking distance of k and destination station j within

23



www.manaraa.com

walking distance of l–if i and j have bikes and docks available. Therefore, the choice

set is kl-specific. We specify Ckl rigorously in Section 1.4. We define the utility of

customer kl’s outside option as

U0kl = X ′
0klθ + ε0kl, (1.2)

where X0kl includes the characteristics of customer kl’s alternative transportation

options. In the main specification, we include the distance of driving and the distance

of public transportation from Google Maps data, as described in Section 1.2.2.3. The

choice probability of kl choosing ij ∈ Ckl is then

Pijkl(X, β, θ) =
exp(X ′

ijklβ + ξij)

exp(X ′
0klθ) +

∑
i′j′∈Ckl

exp(X ′
i′j′klβ + ξi′j′)

. (1.3)

For ij /∈ Ckl, we have Pijkl = 0. Let qij be the total number of trips on route ij

predicted by the model. Then

qij(X,W,α, β, θ) =

∫
Pijkl(X, β, θ)dD(Wkl, α), (1.4)

where D(Wkl, α) is a density function that measures the number of potential cus-

tomers traveling from location k to location l. It is a function of Wkl, the charac-

teristics of the commuter origination and destination pair. In Wkl, we include the

population density and the number of Google place counts at both k and l. Given

that the objective of our analysis is to understand long term average customer de-

mand and to evaluate different network expansion strategies which mainly involves

comparing usage levels across locations, we do not model the high-frequency variation

of usage over time.9 Instead, we use Equation (1.4) to describe the average usage

during the morning and evening rush hours, allowing all the parameter values to be

different for the two rush hour time windows. We do not model demand variations

9Another reason for not using the temporal variation in the data is that we do not have exogenous
covariates that vary over time, which introduces difficulties in estimating the parameters consistently.
In fact, if we consider the morning rush hour as an example, let t be different days or weeks in a
year, none of the features X in (1.3) and (1.4) depends on t.
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on the same route across time or time dimension substitutions on the same route.

Therefore, taking the morning rush hour as an example, qij in Equation (1.4) should

be interpreted as the average daily usage of route ij during the morning rush hour,

or equivalently, the total usage in a year during the morning rush hour. Similarly

D(Wkl, α) measures the travel demand from location k to location l on an average

day during the morning rush hour, or equivalently, the total travel demand from k

to l throughout a year.

The core of the model is multinomial logit. It is known for implying unrealistic

substitution patterns or the independence of irrelevant alternatives property. How-

ever, [20] illustrate that the multinomial logit model can allow for flexible substitution

patterns if one introduces random coefficients. Here, we take an alternative approach

and utilize the spatial aspect of the data to generate, through the density function,

flexible substitution patterns. The density function plays the role of the random co-

efficient in the following sense. The options chosen by nearby customers with similar

Wkl values are closer substitutes than otherwise. This breaks the independence of

irrelevant alternatives property of the multinomial logit models. See [39] and [63] for

similar approaches.

The unknown parameters that we need to estimate in this model are β, θ, and α in

Equations (1.3) and (1.4). Note that all three parameters are vectors. We detail the

estimation procedure in the following section. With the estimates of β, θ, and α, we

will be able to predict the customer choices across the city and, therefore, the overall

changes in usage on the network under counterfactual station network expansions.

1.4 Estimation

In this Section, we explain the estimation of the model. We start by introducing

the endogenous choice set problem. Then, we explain our proposed solution to the
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problem and provide evidence showing that, without properly accounting for the en-

dogeneity problem, the parameter values can not be recovered without bias, thus

leading to unreasonable expansion policy recommendations. Finally, we provide de-

tails on the rest of the estimation procedure and present the structural estimation

results.

1.4.1 Endogeneity of choice set

In a classic discrete choice model, customers choose from a set of products or service

options to maximize utility. The choice set is either perfectly observed or pre-set by

the researcher. In our setting, the choice set is the set of possible routes ij from

which customers can choose to commute from k to l. Compared with the classic

setting, the complication here is that whether a particular route ij is in the choice

set of a customer, Ckl, depends on whether there are bikes available at station i for

the customer to pick up, and whether there are docks available at station j for her to

return the bike to. As shown in Table 1.1, some stations frequently run out of bikes

and docks, and there is significant variation across stations in terms of bike and dock

availability. Of course, whether a station has bikes or docks available is not randomly

assigned. It depends on the usage level at the station, or, in other words, how popular

it is. Indeed, more popular origination stations are more likely to run out of bikes,

and more popular destinations are more likely to run out of docks. Therefore, the

choice set of the customer depends on how popular or preferable the routes are. This

means that the choice set is endogenous to the choice behavior itself.

We now discuss the details of the endogeneity problem and how it biases the es-

timation results. In our discrete choice model, the utility of customer kl choosing

to bike the route ij is given by Equation (1.1). Let X, W , and ξ be the matri-

ces {Xijkl}ij=1,...,N,kl=1,...,M , {Wkl}kl=1,...,M , and {ξij}ij=1,...,N , respectively. To obtain

consistent estimators of α and β, one necessary condition is that ξ is mean zero, con-
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We discuss shortly why the methods used in those studies are not applicable in our

setting.

The endogenous choice set problem is difficult to deal with directly for the follow-

ing two reasons. First, choice sets are not modeled in classic discrete choice models.

Choice models have focused on deriving choice probabilities for a collection of pre-

determined options. The set of options is typically not part of the likelihood function

or moment conditions that researchers use to estimate the demand model. Second,

it is difficult to apply classic instrumental variable approaches directly to the prob-

lem. Instrumental variables are classic tools for dealing with endogeneity problems in

regression analysis. However, such approaches require that the endogenous variable

enters the regression equation in a linear fashion. In our context, as shown in Equa-

tion (1.1), the choice set is nonlinear in the utility function. Therefore, it is infeasible

to apply the instrumental variable approach directly.

Our proposed solution consists of two steps. In the first step, we convert the

discrete choice set to a continuous average availability measure. Instead of specifying

which routes are available in the choice set at different points in time, we allow all

possible routes to be in the choice set, and let the long term average availability vary

across routes. In other words, we compute, over the one year sample period, the

fraction of time a station i has at least five bikes or docks available during the rush

hour window, bike availi and dock availi. We compute the two measures separately

for the morning and evening rush hours.11 By doing so, we ignore the variation of the

choice set within the time window and across different days of the year. Effectively

we only utilize the cross-sectional variation in the data across different locations and

average out the temporal variation. We argue that this is a reasonable restriction for

three reasons. First, our model is used to understand the observed and to predict the

11As discussed below, we estimate the morning and evening rush hour usage separately in two
models, in light of the very different usage patterns. Therefore, the availability measures are also
computed separately for morning and evening rush hours.
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counterfactual long-term average usage, instead of usage from one hour to the next.

Besides, it is natural to assume that the long-term average usage is the key measure

which managing companies and local governments care most about when designing

the bike share system. Second, as shown in the preliminary evidence section, the

London bike share system is commuter-dominant. Therefore, it is reasonable to

focus on average availability because most customers are repeat users who care more

about average availability within the rush hour commuting time window.12 Third,

we conduct a variance decomposition exercise for the availability measures and find

that the cross-sectional variation is the main source of variation in our data. After

converting the discrete choice sets to the continuous average availability measures,

we rewrite Equation (1.1) as:

Uijkl = β1bike availi + β2dock availj +X ′
ijklβ3 + ξij + εijkl, ∀ij ∈ Ckl, (1.7)

where the choice set Ckl consists of the feasible routes regardless of their availability.

The long-term bike availability measure at the origination station i and the long-

term dock availability measure at the destination station j are included in the utility

function. As discussed before, these two availability characteristics are likely to be

correlated with ξij, and, therefore, are endogenous. However, Equation (1.7) shows

that the endogeneity problem of choice set can become a familiar endogenous linear

characteristic problem in the utility function. The problem is exactly the same as in

most demand estimation, where the price of the product or service is the endogenous

characteristic, and the usual instrumental variable approach applies.

The second step consists of finding valid instruments for the availability mea-

sures. In previous studies, [33] exploit a quasi-experiment in product restocking time

to deal with the endogeneity problem. However, no quasi-experiment is available in

our setting. [69] use supply-side instrumental variables to account for the endogene-

12On the other hand, if most usage is from casual users like tourists, short term availability would
be more important.
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ity of product stock-outs in supermarkets. However, they find that the estimation

results are the same with or without the instrumental variables. [63] use similar

types of instrumental variables as in [20], i.e., the characteristics of nearby stations.

But these types of instruments have been shown to have weak identification power

[6]. Moreover, when one treats stations as nodes on a network instead of as inde-

pendent stations, the characteristics of nearby stations might become even weaker in

their ability to identify the parameter of interest. To overcome these difficulties, we

propose a novel set of instrumental variables by utilizing the station network struc-

ture. We show that properly accounting for the endogeneity of the choice set is key

to recovering consistent estimates of the parameters and providing reasonable policy

recommendations. We discuss the details of the instrumental variables in Section

1.4.2. As we will show later in the estimation results, without the instrumental vari-

ables, the bias can be substantial, and, more importantly, it can lead to unreasonable

policy recommendations.

1.4.2 Instrumental variables

In this section, we discuss the instrumental variables for the bike and dock avail-

ability measures. The main difference between our setting and a classic demand

estimation setting is that our data are generated from a station network instead of

from independent station observations. When the data is generated from a network,

the challenge in finding valid instrumental variables is that the exogenous covariates

observed in the data are likely to be correlated spatially and throughout the network.

The correlations, therefore, might lead to violations of the exclusion restriction for an

instrumental variable to be valid. To solve this problem, we introduce a new method

of constructing instrumental variables in a network setting. In particular, we utilize

the station network structure to construct instrumental variables for the availability

measures. We start the discussion by explaining why the exclusion restriction is vi-
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olated if we apply the commonly used instrumental variables, and we then describe

our proposed solution.

The commonly used instrumental variables for the endogenous characteristic (typ-

ically, price; in our case, availability measures) in demand estimation are the exoge-

nous characteristics of the products offered in the same market [20]. These are the

so-called BLP instruments [22]. The reasoning behind the validity of the BLP instru-

ments is that, if a product is more isolated from the other products in the product

characteristic space, then it has higher margin, which leads to exogenous variations in

prices. The key point for these instruments to work is that the variations in product

characteristics are exogenous. Applying the same idea to the availability at station i,

for example, one would use station k’s characteristics Sk as instruments, where i and

k are close to each other. [63] use these types of instrumental variables in a similar

setting. However, when stations are not independent but are nodes on a network, the

BLP instruments may not be valid anymore. For example, if k and i are spatially

close, Sk and Si can be highly correlated. This implies that, conditional on Si, there

is little variation in Sk that we can utilize to identify the coefficient of the availability

at i. It could also be the case that since k and i are close to each other, kj and

ij are similar routes to customers, which implies that the availability at stations k

and i can be very much correlated. Then, it is even more difficult to find exogenous

variations to identify the availability coefficients. Both examples indicate that the

BLP instruments are not appropriate in the current setting, where spatial proximity

and network structure are prominent in the data.

Next, we explain how we deal with the challenge of correlations in network data

and introduce the proposed instrumental variables. First, we define two stations as

“connected” (or “connected on the network”) if there are customers using the route

between the two stations. To be precise, stations i and j are connected means that

qij + qji > 0. We use the bike availability at station i as an example illustrating the
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construction of valid instrumental variables for the availability measures. We want

the instruments to be uncorrelated with ξij but correlated with bike availi. For that

we look for the average of some exogenous characteristic over station h ∈ H1(ij),

denoted as 1
|H1(ij)|

∑
h∈H1(ij)

Sh, where station h ∈ H1(ij) must satisfy the following

two conditions.

First, station h must be connected to station i. In other words, customers are

biking between h and i. If h and i are connected, the exogenous characteristics of

station h affect the usage on route hi or ih and, therefore, the bike availability at

station i. The relevance condition then holds for the instrument Sh:

E[bike availi · Sh] �= 0, (1.8)

for all h ∈ H1(ij).

Second, station h needs to be sufficiently far away from station j, so that almost

no customer bikes the route hj or jh. To be precise, we require d(h, j) ≥ D where

D is a threshold to be specified later. If no one bikes the route hj or jh, then route

ij and hi or ih are not substitutable for any customer–i.e., route ij and route hi

or ih are potential choices of customers who are interested in traveling from and

to different locations. In other words, route ij and route hi or ih are products in

different markets. As a result, the exogenous product characteristic Sh is unlikely to

be correlated with the unobserved product characteristic ξij. Formally, we have

E[ξij|Sh] = 0, (1.9)

for all h ∈ H1(ij). This is the exclusion restriction.

If Equations (1.8) and (1.9) are satisfied, then 1
|H1(ij)|

∑
h∈H1(ij)

Sh is a valid in-

strument for the bike availability at i. Formally, we can write H1(ij) := {h ∈ H :

d(h, j) ≥ D, qih + qhi > 0}, where H denotes the set of all stations; d denotes the dis-

tance function; qij denote the total trip count on route ij; and D denotes a required

distance threshold from station h to station j. We postpone the discussion about
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the choice of the threshold until the end of this subsection. Note that we require

only the sum of qih and qhi to be positive–i.e., we do not require both qih and qhi

to be positive. As long as there are connections between the two stations, Equation

(1.8) is satisfied. We use the same criterion to find instruments for the dock avail-

ability at station j–i.e., 1
|H2(ij)|

∑
h∈H2(ij)

Sh for some station characteristics S, where

H2(ij) := {h ∈ H : d(h, i) ≥ D, qhj + qjh > 0}.
Next, we discuss the particular choice of the exogenous characteristics S. In prac-

tice, we find that the average station characteristics of h, 1
|H1(ij)|

∑
h∈H1(ij)

Sh, can

be very weakly correlated with the bike availability at station i. The main reason is

that the traffic goes in and out of station i at the same time. As a result, the aver-

age correlation between 1
|H1(ij)|

∑
h∈H1(ij)

Sh and the availability at i is close to zero.

Similarly, the correlation between 1
|H2(ij)|

∑
h∈H2(ij)

Sh and dock availj is very small

in absolute value. To solve this problem, we utilize the direction of the traffic during

rush hours. As shown in Figures 1.1 and 1.2, the traffic during rush hours is by large

unidirectional. During the morning rush hour, the traffic goes from the outer part of

central London to the less residential city center. During the evening rush hour, the

opposite pattern is observed. We rely on the directions of traffic and construct direc-

tional instrumental variables to ensure a stronger correlation between our instruments

and the availability measures. Take route ij in the evening rush hour as an example.

We use the interaction between the number of total Google place counts around sta-

tion h and the population density around station i as one of our main instruments.

During the evening rush hours, commuters mainly travel from their places of work

to their homes. Then, the interaction between the total number of Google places

around h and the population density around i is positively correlated with the bike

availability at i during this time of the day. Similarly, the interaction between Google

place counts around i and the population density around h is negatively correlated

with the bike availability at i. In other words, for the bike availability at station i,
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our main instrumental variables are 1
|H1(ij)|

∑
h∈H1(ij)

GoogleP lacesh ∗ PopDensityi,

and 1
|H1(ij)|

∑
h∈H1(ij)

PopDensityh ∗GoogleP lacesi. We follow the same logic to con-

struct the instruments for the dock availability at the ending station j: namely,

1
|H2(ij)|

∑
h∈H2(ij)

PopDensityh ∗GoogleP lacesj and
1

|H2(ij)|
∑

h∈H2(ij)
GoogleP lacesh ∗

PopDensityj. Recall that H2(ij) is the set of stations that satisfy the “opposite”

conditions as H1(ij)–i.e., they are far away from station i but connected to station

j. Recall that earlier in this subsection we have established that 1) E[ξij|Si] = 0 and

E[ξij|Sj] = 0, by the exogeneity of Si and Sj; and 2) E[ξij| 1
|H1(ij)|

∑
h∈H1(ij)

Sh] = 0

and E[ξij| 1
|H2(ij)|

∑
h∈H2(ij)

Sh] = 0, where S is GoogleP laces or PopDensity. With

these two conditions, we have that the exclusive restriction holds for the interaction

instruments:

E[ξij| 1

|H1(ij)|
∑

h∈H1(ij)

ShS
′
i] = 0,

E[ξij| 1

|H2(ij)|
∑

h∈H2(ij)

ShS
′
j] = 0,

where S, S ′ ∈ {GoogleP laces, PopDensity}, and S �= S ′. For example,

E[ξij| 1

|H1(ij)|
∑

h∈H1(ij)

GoogleP lacesh ∗ PopDensityi] = 0.

The interaction instruments also satisfy the relevance condition trivially. Therefore,

the interaction terms are another set of valid instrumental variables for the availability

measures.

To complete the definition of our instruments, we need to specify a radius R for

calculating GoogleP laces and PopDensity of the instrument station h, and the focal

stations i and j. To be precise, PopDensityRh is the population density integrated

over a disk with radius R centered at station h, and GoogleP lacesRh is the total

number of Google places within R meters from station h. The superscript R denotes

the radius of the characteristic calculation. To make set H1(ij) and H2(ij) explicitly

depend on threshold D as well we add a superscript D to them.
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We next discuss the choice of the two hyperparameters R and D. We set D =

7000m, which is the 94% quantile of the distribution of route distance for routes with

positive trip count in the data. It is a reasonable choice for two reasons. First, it

is long enough to ensure the exclusive restriction, and, therefore, the validity of the

instrument. Moreover, it is not too long, which avoids situations in which HD
1 (ij)

or HD
2 (ij) has none or very few stations for many routes ij. On the other hand, we

do not have strong views about the exact values to use for R. Thus, we use a range

of values. In our main results, we choose R = 600, 800, 1000m. Our main results

are robust to perturbing the two hyperparameters D and R. The robustness check

results are presented in the Online Appendix.

So far, our proposed set of instruments are:

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

GoogleP lacesRh ∗ PopDensityRi ,

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

PopDensityRh ∗GoogleP lacesRi ,

1

|HD
2 (ij)|

∑
h∈HD

2 (ij)

PopDensityRh ∗GoogleP lacesRj ,

1

|HD
2 (ij)|

∑
h∈HD

2 (ij)

GoogleP lacesRh ∗ PopDensityRj ,

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

GoogleP lacesRh ,

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

PopDensityRh ,

1

|HD
2 (ij)|

∑
h∈HD

2 (ij)

GoogleP lacesRh ,

1

|HD
2 (ij)|

∑
h∈HD

2 (ij)

PopDensityRh .

(1.10)

In addition to this set of instruments, we also utilize the elevation characteris-

tics which are directional by themselves to construct additional instruments. For

example, if the route hi is difficult to bike because it requires heavy climbing, the
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bike availability at station i is more likely to be low. This is the relevance con-

dition. The exclusive condition can be verified using the same argument as for

the interaction instruments proposed before–i.e., if h is far away from j, the el-

evation characteristics of routes hi and ih should be uncorrelated with ξij. As

a result, 1
|HD

1 (ij)|
∑

h∈HD
1 (ij) AvgAscendGradehi,

1
|HD

1 (ij)|
∑

h∈HD
1 (ij) AvgAscendGradeih,

and 1
|HD

1 (ij)|
∑

h∈HD
1 (ij) AscendPercentagehi can be used as instruments for the bike

availability at the starting station i of route ij.13 Similarly, we construct three addi-

tional instruments for the dock availability at ending station j. We have six additional

instruments given by:

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

AvgAscendGradehi,

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

AvgAscendGradeih,

1

|HD
1 (ij)|

∑
h∈HD

1 (ij)

AscendPercentagehi,

1

|HD
2 (ij)|

∑
h∈HD

1 (ij)

AvgAscendGradehj,

1

|HD
2 (ij)|

∑
h∈HD

1 (ij)

AvgAscendGradejh,

1

|HD
2 (ij)|

∑
h∈HD

1 (ij)

AscendPercentagehj.

(1.11)

Equations (1.10) and (1.11) specify the complete set of instruments. We use the

exact same set of instruments in Equations (1.10) and (1.11) for evening and morning

rush hour. Although the validity of the instruments follow the same reasoning, the

correlation between our instruments specified in Equation (1.10) and the availability

measures is reversed. For example, 1
|HD

1 (ij)|
∑

h∈HD
1 (ij) GoogleP lacesRh ∗ PopDensityRi

13We do not use 1
|HD

1 (ij)|
∑

h∈HD
1 (ij) AscendPercentageih, since it is the same as

1− 1
|HD

1 (ij)|
∑

h∈HD
1 (ij) AscendPercentagehi.
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is positively correlated with bike availi in the evening rush hour, but is negatively

correlated with bike availi during the morning rush hour.

1.4.3 Digression: reduced-form regressions

To illustrate the choice set endogeneity problem with data and to show the valid-

ity of our instruments, we take a digression from the structural estimation in this

Section, and provide model-free evidence using reduced form regressions. The re-

duced form regression results show that ignoring the endogeneity problem leads to

biased estimates and unreasonable policy recommendations, and that our proposed

instrumental variable approach solves these problems.

1.4.3.1 Regression equation

We run the regressions separately for the morning and evening rush hours. We

describe the regression equation using evening rush hour14. The dependent variable,

log(#tripij), is the log of total trip count during the evening rush hour in 2014,

starting from station i and ending at station j. Then,

log(#tripij) = ψ1bike availi + ψ2dock availj + Z ′
ijφ+ εij, (1.12)

where bike availi and dock availj are the availability measures during evening rush

hour defined as before. Zij contains exogenous characteristics for route ij. It has

1) the Google Place counts described in Section 1.2.2.3, within R = 600, 800, 1000m

around both i and j; 2) the population density within R = 600, 800, 1000m from

both i and j; 3) a piece-wise linear function of the biking distance capturing the

first increasing and then decreasing pattern of the commuter preference for the bik-

ing distance: log d(i, j) and max{log d(i, j) − log b, 0}, where the kink b is set at

14The analysis for the morning rush hour is the same. For notational simplicity, we do not include
an ER superscript for each variable in the regression equation
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1.5 km. We choose 1.5 km for two reasons. First, Figure 1.3 clearly indicates that

the peak of average usage is around 1.5 km. Second, when we vary the kink point,

b = 1.5 km explains the most variations in log trip counts. We present the re-

sults with different b values in the Online Appendix; 4) the elevation characteristics

AvgAscendGradeij and AscendPercentageij as described in Section 1.2.2.3. In total,

we have 1 + 10 × 2 × 3 + 1 × 2 × 3 + 2 + 2 = 71 exogenous characteristics in Zij.

We also have two endogenous covariates for which we need instrumental variables:

bike availability and dock availability. Recall that, as shown in (1.10), for each value

of R = 600m, 800m, 1000m, we have eight instrumental variables. Thus, we have

8 ∗ 3 = 24 instruments from (1.10). We also have six instruments from (1.11) which

makes it 30 instrumental variables in total.

Morning rush hour Evening rush hour

OLS IV OLS IV

O. Bike Avail. 0.05 0.69 0.13 1.37
% (0.03) (0.21) (0.03) (0.15)

D. Dock Avail. 0.50 1.47 -0.46 1.89
% (0.04) (0.16) (0.03) (0.13)

Dist. 1 0.12 0.10 0.14 0.15
In log km (0.02) (0.02) (0.03) (0.03)
Dist. 2 -0.37 -0.36 -0.42 -0.39

>1.5km, in log km (0.03) (0.03) (0.03) (0.03)

R2 0.20 - 0.33 -

Cragg-Donald Statistic - 83.64 - 99.37

Table 1.2: Reduced-form regression results

1.4.3.2 Regression results

In Table 1.2, we present the results of ordinary least squares (OLS) regressions without

instrumenting availability measures and the results of the instrumental variable (IV)

regressions using our proposed instruments. Table 1.2 includes the main coefficient
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estimates and their standard errors in parentheses. For the OLS regressions, we also

report the adjusted R2. For the IV regressions, we estimate Equation (1.12) using

the generalized method of moments (GMM). Moreover, to test the strength of the

instruments, we perform the weak instrument test introduced by [82] and report

the Cragg-Donald statistics. As discussed above, in our main specification, we set

R = 600, 800, 1000m for the station characteristics and D = 7000m for the distance

threshold. We check that our results are robust to perturbing values of R and D

values and details are left in the Online Appendix.

Since the results for the morning and evening rush hour are similar, we discuss

only the results for the evening rush hour, which are presented in columns 3 and

4 of Table 1.2. There are four main insights. First of all, in the OLS regression

presented in column 3, the ending station dock availability coefficient is negative and

significant. This means that commuters get higher utility if it is more difficult to

find a dock available at the destination station. Moreover, the policy implication of

the result is that, if the managing company or local government wanted to increase

the usage of the system, they should make it harder for people to dock their bikes at

the destination stations. Obviously, this cannot be the case. But if we acknowledge

the endogeneity issue of the availability measures, this result is easy to explain: more

popular destinations are more likely to run out of docks-hence the negative coefficient

on dock availability. This is the classic “reverse causality” problem in econometrics.

On the other hand, when we run the IV regression with our proposed instruments in

column 4, the negative coefficient becomes positive, and it is statistically significant.

The interpretation is that higher dock availability at destination stations is preferable

to commuters. Therefore, the usage would be higher, if the dock availability improved

at the destination stations.

Second, we compare the coefficient on the origination station bike availability

in the OLS and IV results. Both of the estimated parameters are positive. One
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might argue that, in this case, using the IV regression does not benefit the analysis

substantially. However, the magnitudes of the two coefficients are very different. The

estimated impact of having higher bike availability at the origination station on log

trips in the IV regression is more than ten times as high as that in the OLS regression.

This difference is expected since the “reverse causality” predicts a negative correlation

between bike availability at i and usage on ij. The OLS result combines the “reverse

causality” and the correct positive relationship, and, therefore, is smaller than the

IV estimate. This comparison shows how important it is to take into account the

endogeneity issue of the choice set, and how significant its implications are for policy

recommendations derived from the estimation results.

Third, the distance coefficients do not change much between the OLS and IV

results. The first distance parameter is positive, which captures the route usage

increasing in route distance when the distance is below 1.5 km, as shown in Figure

1.3. The second distance parameter is negative and much bigger in magnitude than

the first distance parameter. This is consistent with the pattern in Figure 1.3. The

same pattern is also observed in the structural estimation result, which is detailed in

Section 1.4.4.

Fourth, the Cragg-Donald statistics from both the morning and evening rush hour

are very high. The critical value corresponding to our setting, in which there are 30

instruments and two endogenous covariates, is 20.86 (for the relative bias level of

0.05, see [82] for details of the calculation). Our statistics, 83.64 and 99.37, are more

than four times bigger than the critical value. Therefore, we can strongly reject the

weak instrument null hypothesis.

1.4.4 Structural estimation

In this section, we discuss the structural estimation procedure and present the results.

We use the generalized method of moments with the proposed instruments to recover
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the parameters in Equations (1.3) and (1.4). However, estimating the parameters in

the structural model creates computational challenges. The methods introduced in

[20] can accommodate non-linear parameters, but they are computationally feasible

for only relatively low number of products or services in the choice set [83]. Since

there are over 500,000 routes in the data, the estimation is computationally infeasible,

even using the MPEC algorithm developed by [83].

To make the estimation feasible, we divide the coverage area into blocks and esti-

mate the model on routes between station blocks instead of routes between stations.

Similar methods have been used in the literature studying demand and supply of taxi

cabs [24, 45] and demand predictions of the bike share system in New York [81]. In

the block model, customers choose the commuting routes between station blocks in-

stead of the specific route between stations. This reduces the computational burden

substantially and makes the estimation possible. Of course, it imposes restrictions on

the model and, therefore, on consumer behavior captured by the model. We argue

that the modification is reasonable for the following reasons. First, it preserves the

average substitution patterns across routes between different blocks. Since the coun-

terfactual predictions we are interested are not the exact longitude and latitude of the

location of the stations to be built, but which neighborhoods more stations should

be added to or which new areas the network should expand into, understanding the

average usage and substitution patterns across blocks is sufficient. Second, only three

percent of the total trips in the data are between two stations within a block. As a

result, we exclude very few data points by estimating the model at the block level. In

other words, summarizing trips across blocks provides a good approximation of the

general usage patterns in the network.

Next, we discuss the details of the block model. We divide the coverage area into

uniform 1000m×1000m blocks. The stations within each block are treated as a single

representative station. The location of this representative station is defined as the
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center of the stations in that block and used as the location of the station block. We

denote the starting station block by capital letter I and the ending station block by J .

The availability measures of a station block, baI or daJ , are calculated as the average

availability measures for all stations within that block. The route distance of IJ is

defined as the average distance across all routes from any station in I to any station in

J . The other covariates in the utility function are defined similarly. Compared with

the route-level model, we include two additional covariates in the utility function,

log SCI and log SCJ , which are the log total number of station counts in block I

and J . These covariates capture the variation of the number of route options across

station blocks.

The origination and destination locations, which commuters are interested in trav-

eling from and to, are modeled as points of a grid. We divide the coverage area into

200m × 200m squares and take the center point of each square as potential origina-

tion and destination locations of customers. In total there are 3263 such locations

and therefore 32632− 3263 possible origination-destination pairs kl considered in our

model. For commuters traveling from location k to location l, walking distance d(k, I)

is defined as the average distance between location k and all stations i ∈ I. d(J, l)

is similarly defined. We define Ckl, the choice set of commuters kl, as any routes

starting from the four closest station blocks to k based on d(k, I), to the four closest

station blocks to l based on d(J, l). There are thus 16 block-level routes in Ckl for

customer kl. Since we do not observe the walking distance directly from the data,

we also conduct the estimation using the same model without walking distance. Our

conclusions do not change.15

The utility of commuter kl choosing route IJ is given by

UIJkl = X ′
IJβ +X ′

IJklγ + ξIJ + εIJkl, ∀IJ ∈ Ckl. (1.13)

XIJ includes two sets of covariates. First, it includes a set of variables similar to the

15We provide the details of this robustness check in the Online Appendix.
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ij-level covarites: an intercept, the two endogenous covariates baI , daJ , the distance

characteristics log d(I, J) and max{log d(I, J) − log b, 0}, and the elevation features

AvgAscendGradeIJ and AscendPercentageIJ . Second, it also includes the log station

count for both the starting and the ending clusters, logSCI , logSCJ . We define XIJ

separately from the rest of the covariates because they depends only on IJ but not

kl. In other words, β is the vector of linear parameters. XIJkl includes the walking

distance variables d(k, I) and d(J, l). Since XIJkl depends on both IJ and kl, γ is

the vector of nonlinear parameters.

The choice probabilities are calculated similarly to Equation (1.3) in the ij-level

model:

PIJkl(X, β, γ, θ) =
exp(X ′

IJβ +X ′
IJklγ + ξIJ)

exp(X ′
0klθ) +

∑
I′J ′∈Ckl

exp(X ′
I′J ′β +X ′

I′J ′klγ + ξI′J ′)
. (1.14)

Similar to Equations (1.4), the model predicted total number of trips on route IJ is:

qIJ(X,W,α, β, γ, θ) =

∫
PIJkl(X, β, γ, θ)dD(Wkl, α). (1.15)

We follow the MPEC algorithm [83] and minimize the GMM loss function while

matching the observed usage on the block-level routes with the predicted qIJ to

recover the parameters α, β, γ, and θ. We have 112 station blocks in total and

thus 1122 potential routes.16 We use the same set of instruments for the availability

measures as in the reduced-form regressions, specified by Equations (1.10) and (1.11).

We present the structural estimation results for the morning and evening rush

hours in Table 1.3 and 1.4, respectively. We start the interpretations of the results

by the linear utility parameters. First, in both the morning and evening rush hour

results, the availability measures have the expected signs. The higher the average

16The dimension of the product space is reduced from around 7612 in the route-level model to
around 1122 in the current model.
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Non-linear para. Linear para.

O. Pop. Density 0.021 Intercept -6.941
(Ppl per hec) (0.015) (1.211)

D. Pop. Density -0.038 S. Station Count 0.899
(0.019) (In log) (0.055)

O. Google Plc. 0.019 E. Station Count 0.756
(Num per 4 hec) (0.016) (0.031)
D. Google Plc. 0.286 S. Bike Avail. 1.730

(0.107) (%) (0.263)
O. Walking Dist. -3.145 E. Dock Avail. 1.790

(1km) (0.764) (0.206)
D. Walking Dist. -0.927 Route Dist. 1 1.610

(0.514) (In log) (0.267)
O.D. Driving Dist. 0.254 Route Dist. 2 -2.953

(1km) (0.052) (>1.5km, in log) (0.362)
O.D. Transit Dist. 0.039 Avg. ascend grade -5.549

(1km) (0.056) (tanα) (2.953)
% segments ascending -1.253
(between 0 and 1) (0.196)

Pseudo-R2 0.667

Table 1.3: Demand estimates: morning rush hour

availability, the higher utility the commuters gain from biking the route. Moreover,

on average, the commuters seem to care more about the bike and dock availability

during the morning rush hour than the evening rush hour. This is consistent with

the fact that commuters have a tighter schedule in the morning than in the evening,

and, therefore, value availability more on the way to work in the morning than after

work in the evening. Second, the biking distance parameter is positive when the route

length is less than 1.5 km, and negative when the route length exceeds 1.5 km. This

is consistent with both the model-free preliminary evidence directly observed in the

data and the reduced form regression results. The coefficients of both origination and

destination station counts are positive and statistically significant. This implies that

commuters get higher utility when there are more station options in an area. Third,

the average ascending grade and the ascending percentage both have negative coeffi-
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Non-linear para. Linear para.

O. Pop. Density -0.045 Intercept -3.494
(Ppl per hec) (0.004) (0.586)

D. Pop. Density 0.005 S. Station Count 0.897
(0.007) (In log) (0.024)

O. Google Plc. 0.182 E. Station Count 0.924
(Num per 4 hec) (0.024) (0.052)
D. Google Plc. 0.037 S. Bike Avail. 0.978

(0.011) (%) (0.189)
O. Walking Dist. -2.036 E. Dock Avail. 0.822

(1km) (0.288) (0.282)
D. Walking Dist. -4.174 Route Dist. 1 2.096

(0.724) (In log) (0.201)
O.D. Driving Dist. 0.151 Route Dist. 2 -4.083

(1km) (0.031) (>1.5km, in log) (0.267)
O.D. Transit Dist. 0.075 Avg. ascent grade -7.375

(1km) (0.032) (tanα) (2.694)
% segments ascend -1.223
(betweem 0 and 1 ) (0.149)

Pseudo-R2 0.792

Table 1.4: Demand estimates: evening rush hour

cients and are mostly significant. This implies that the routes with higher ascending

grade or higher share of ascending segments are less attractive to commuters which

is consistent with our intuition.

Next, we discuss the non-linear parameters in the density model and the utility of

the outside option. First, all walking-distance coefficients are negative and significant,

except for the walking distance from the ending station block to the destination

location in the morning rush hour. This implies that commuters prefer docking

stations closer to their origination and destination locations of interest. However,

when we compare the pseudo-R2 of the results to those where we exclude walking

distance from the model, the difference is less than .01. In other words, including

walking distance does not improve the explanatory power of the model.17 Second,

17The detailed results are presented in the Online Appendix.

46



www.manaraa.com

for the morning rush hour, the population density coefficient is much bigger at the

origination location k than at the destination location l. The reverse is true for the

Google place count coefficients. This indicates that the commuters are more likely to

travel from the residential areas of the city (where they live) to the city center (where

they work). The direction of the traffic is consistent with what we observe directly

from the data in Figure 1.1. We observe the opposite pattern in the magnitudes of

those coefficients for the evening rush hour. This result shows that our model captures

the directions of the traffic nicely, which would have been impossible to achieve had

we treated stations as independent instead of as nodes linked to each other on a

network. Third, the driving distance and transit distance coefficients indicate that

commuters find biking a less attractive option when the trip is longer.

Finally, the pseudo-R2 of both the morning and evening rush hour results, 0.669

and 0.793, respectively, shows that our model fits the data well. Moreover, as shown in

the Online Appendix, the pseudo-R2 remains high with different model specifications.

This suggests that our model fit is robust to model specifications.

1.5 Counterfactuals

Using the estimated model, we conduct three counterfactual experiments related to

network design and expansion. In the first counterfactual, we evaluate a specific plan

to expand the network into the Islington and Hackney areas, which the local commu-

nity proposed in 2012. Using our model and estimates, we show that although the

expansion benefits the local community in Islington and Hackney, the magnitude of

the overall usage increase in the network is not substantial. Our analysis provides

the managing company with important insights and guidance for the expansion of

the network. In the second counterfactual, we generalize the insights from the first

counterfactual and investigate the best locations to add stations in the current net-
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work. In particular, we compute the marginal effect of adding one station at different

locations in the network. We show that adding stations to the city center leads to ten

times more usage increase than adding stations to the peripheries. More importantly,

we identify two types of network effects in our findings. Our results highlight the

significance of network effects in understanding and evaluating the expansion of the

network. In the third counterfactual, we investigate a different type of expanding

strategy than in the second counterfactual. Instead of adding stations to the net-

work, we keep the current network and study the best locations to add bikes and

docks. Similar to the second counterfactual, we show that the network effects play

an important role in determining the usage increase when adding bikes and docks to

different locations. Moreover, by comparing the differences between adding bikes and

docks, we highlight the interplay of network effects and the direction of commuting

traffic in the results.

1.5.1 Expansion to Islington and Hackney

Like many bike sharing programs in major cities, the “Boris Bikes” went through

several major expansions since they were first introduced.18 The city has been ex-

panding the network continuously, 19 and there are calls and proposals from the local

government and communities for further expansions. One of the many proposals is

to expand the bike share system to Islington and Hackney.20 In this counterfactual,

we use our estimated model to evaluate this particular expansion proposal.

We add four new blocks of stations covering the Islington and Hackney areas.

Each block contains four stations, which is the same station density as in the neigh-

18Source:https://tfl.gov.uk/info-for/media/press-releases/2013/december/mayor-launches-huge-
expansion-of-flagship-barclays-cycle-hire-scheme

19Source:http://www.cityam.com/268035/lycra-ready-south-london-santander-cycles-scheme-expanding

20Source: http://www.islingtongazette.co.uk/news/environment/plea-for-boris-bikes-to-be-wheeled-out-
across-islington-1-1454024
https://www.change.org/p/transport-for-london-and-islington-council-roll-out-the-london-cycle-hire-
scheme-to-the-whole-of-islington
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Figure 1.4: Predicted new station usage after expansion

boring blocks observed in the current network. We compute the sum of predicted

usage during morning and evening rush hours (throughout a year). We assume that

the new station blocks have the same average availability levels to those of the clos-

est existing blocks. The availability of the rest of the station blocks stays the same.

Given we are adding a small number of new stations to the network, we think this is

a reasonable assumption. The results are presented in Figure 1.4.

The links indicate the routes on which usage increases after the expansions. The

shading of the link indicates the level of usage increase: the darker the color, the

higher the level of usage. Most of the usage increase comes from trips between the

new stations and two areas: one around the new stations, and the other close to the

city center. This result is consistent with the intuition that customers are most likely

to use bikes to travel to nearby areas or to commute to and from the city center.

However, the key point is that the magnitude of the usage increase is very limited.

The total usage increase is about 61,000, which is 1.5% of the total number of trips on

the network during the morning and evening rush hours before the expansion. Our
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model also shows that, if we compare the trip increase per additional station, this

usage increase is less than 20% of the usage increase had the new stations been added

to the city center instead. It suggests that, if maximizing the overall usage is the

objective, adding stations in Islington and Hackney is not optimal. We revisit this

point and provide a more general discussion about the optimal expansion location in

the next counterfactual.

To summarize, although the expansion would benefit the residents in Islington and

Hackney, the usage increase would be much higher if the new stations were allocated,

instead, to the city center. The managing company in the city of London faces a

trade-off between benefiting more people citywide versus providing service access to

a particular community.

1.5.2 Adding one station to the system

In the second counterfactual, we generalize the insights from evaluating the particular

expansion proposal in the first counterfactual. We analyze the optimal location to

expand the network and highlight the importance of network effects in the efficacy of

different types of expansions. The insights are not only important to the bike share

system in London, but are also general enough to be applicable to the design of other

bike share systems.

In this experiment, we add one station to different locations of the network. We

investigate where the optimal location is–i.e., the location that leads to the highest

usage increase in the entire network. Our analysis not only takes into account the

usage increase on routes originating from and ending at the new station. It also

considers the change in usage in other parts of the network induced by customers

substituting between routes. In other words, we calculate the change in usage for all

routes on the entire network, which, we show, is key to evaluating the expansion of

the system.
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Figure 1.5: Predicted usage increase after adding one station

Adding one station is equivalent to increasing the number of stations by 0.14%.

We compute the percentage increase in total usage in the network depending on

the block of stations to which the new station is added. Similar to the previous

counterfactual, we assume the availability level of all station blocks stays the same.

Give the limited impact one station has on the entire network, we think this is a

reasonable assumption. The results are presented in Figure 1.5. Each dot represents

one of the 112 blocks in our coverage area. The shade of the dot indicates the total

usage increase in the network when the extra station is added to the block. As shown

in the figure, there is large heterogeneity in how effective the additional station is

in increasing the overall network usage. The percentage usage increase varies from

close to zero to around 0.5%. The usage increase when the station is added to the

city center can be ten times as high as when the station is added to the peripheries.

This shows that increasing density in the city center has much bigger positive effect

on the overall network usage than increasing the scope of the network. The station

density is too low in city center and too high in the peripheries. Thus, the city center
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Figure 1.6: Predicted usage increase vs. number of stations 1.3km to 1.7km away

is clearly the bottleneck. This finding is partially a result of the implementation of

the 300m between-station rule. Our analysis suggests that the uniform density rule

is much too rigid. A redistribution of stations from the peripheries of the coverage

area to the city center would make the current network far more efficient, if efficiency

is judged by overall usage.

We also investigate the importance of network effects in the large heterogeneity

of the predicted system usage increase, depending on where the new station is added.

First, in Figure 1.6, we plot the usage increase against the number of stations that

are approximately 1.5 km away from the focal station block. There is a very strong

positive correlation. This suggests that adding station to central regions in the net-

work, which we define next, is an important determinant of the usage increase and the

effectiveness of network expansion. This motivates us to look for a precise measure

of centrality that captures the network effect associated with it.

We construct a centrality measure using the number of stations approximately

1.5 km away and compare the measure to station-level usage determinants to better

understand the network effect. This centrality measure is constructed by counting

the number of stations between 1.3 km and 1.7 km away for each station and then
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averaging over all stations within each block. We regress the total usage increase

if one station is added to each block (presented in Figure 1.5), on our centrality

measure of the block, the average population density of the block, the average number

of Google places within the block, and the total number of stations in the block.

We also compare our centrality measure with the conventional eigenvector centrality

measure, where the adjacency matrix is defined by one over the distance between

each pair of station clusters. We regress the predicted usage increase (when adding

one station to each station block) on the three block characteristics and the two

centrality measures. We study how much those five factors can explain the variation

across the predicted usage increase at different station blocks. We do so by comparing

the adjusted R2 in linear regressions. Notice that the estimated coefficients do not

have causal interpretations. Therefore, in the results, we report only whether the

coefficients are statistically significant, and the adjusted R2. We present the results

in Table 1.5.

population density � � � �
Google places �∗∗∗ �∗∗∗ �∗∗∗ �∗∗

number of stations �∗∗∗ �∗∗∗ � �∗∗∗

our centrality - �∗∗∗ - �∗∗∗

eigenvector centrality - - �∗∗∗ �
adjusted R2 0.30 0.52 0.42 0.52

Table 1.5: Determinants of usage increase and network effect

In column 1 of Table 1.5, we present the baseline result in which we regress the

predicted usage increase (when adding one station to each block) on three block

characteristics. The result shows that the station block characteristics explain 30%

of the variation in predicted usage increase across blocks. The regression in column

2 includes our constructed centrality measure as an additional explanatory variable.
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Comparing column 1 and column 2, we see that including our centrality measure

increases the adjusted R2 by 73%. In other words, using our measure of centrality,

being central on the network is key to locating the optimal blocks for the expansion of

the network. This is the first type of network effect of relevance to the station network

expansion and design, which we identify using the model and the estimation. The

regression in column 3 replaces our centrality measure with the conventional eigen-

vector centrality measure. The comparison between column 2 and column 3 shows

that our centrality measure explains the usage increase almost twice as well as the

conventional eigenvector centrality measure. Finally, when we include both centrality

measures, the conventional measure does not explain any additional variation in the

usage increase across station blocks: the adjusted R2 is still 0.52. Moreover, across

all four regressions, the adjusted R2 is never higher than 0.52. This means that, even

when we can identify the right network centrality measure ex ante, the richness of

the structural model helps us predict usage increase and identify optimal expansion

locations much better than simple reduced-form regressions.

Next, we illustrate a second type of network effect by conducting the following

analysis. We recompute the predicted usage increase resulting from adding one sta-

tion to each block with the following change. While keeping the origination station

block characteristics (population density, place counts, number of stations, and bike

availability) and route distance the same as in the data, we set the destination sta-

tion block characteristics (population density, place counts, number of stations, and

dock availability) as the median values of those characteristics. Thus, we investigate

whether the kind of stations (i.e., stations with similar characteristics) to which a

station is connected matters for usage and network expansions. In other words, we

examine whether a good match of origination and destination stations matters for

usage. Specifically, by setting the destination station characteristics to the median

level, we break the match in calculating the predicted usage increase. The difference
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between the result of this calculation and the original usage increase computed above

is the network effect that comes from a good match between an origination station

and a destination station.

We find that, when setting the destination station characteristics as the median

value, the usage increase goes down by 17%, on average, compared to the origi-

nal usage increase. This indicates that not only the number of connecting stations

approximately 1.5 km away matters, but that the kind of connected stations also

matters for usage and network design. This is another type of network effect that

we find relevant for evaluating network expansions in our analysis. In other words,

treating stations as individual products and studying the demand for each on its own

is not enough. Including the entire network of stations in the analysis is crucial to

understanding customer demand and evaluating system expansion strategies.

1.5.3 Improving long-term availability in the system

Adding stations to the network is one way of expanding the bike share system. An-

other way of expanding the network is to add bikes or docks to the existing stations in

the network. This type of expansion can be captured by improving the average bike

and dock availability in our model. In this counterfactual, we analyze the optimal

locations for the operating company to add bikes and docks. This is similar to the

long-term effect of improving availability computed in [63], but our focus is on the

optimal area to improve the availability measures in terms of long-term system usage.

Moreover, we study the effects of improving both bike availability and dock availabil-

ity, while [63] only considers bike availability. We present the results for the evening

rush hour in this section. The analysis of the morning rush hour is done exactly the

same way, and the results do not change qualitatively. Therefore, we leave the results

for the morning rush hour to the Appendix.

In this experiment, we first calculate the improvement of system usage in the
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evening rush hour by adding 0.05 to the average bike availability of each cluster–that

is, the predicted usage increase of the entire system if the operating company makes

the probability of finding an available bike for each cluster 5 percentage points higher

during the evening rush hour. Similarly to the previous counterfactual, we present

in Figure 1.7 the predicted system usage increase in percentage when adding 0.05

to the average bike availability of every cluster, and in Figure 1.8, the improvement

when adding dock availability. Again, each dot represents one of the 112 blocks in

our coverage area, and the shading of the dot indicates the total percentage usage

increase in the network. We can see that there is also a wide gap in predicted trip

increase between the most and least beneficial areas in which to boost availability

during the evening rush hour.

The results also illustrate the interplay of the unidirectional travel pattern and

the network effect. For the evening rush hour, we can see that people generally

move from the city center to more residential areas and, therefore, the best places to

improve bike availability are all in the very center of the network. However, for dock

availability, based on the direction of commuting flow, we should focus on residential

stations around the peripheries since, on average, there will be more travelers going

to those stations. However, as a destination, those stations in the peripheries tend

to have fewer connecting stations that people can bike from–i.e., from the network

effect point of view, they are not the perfect choice. The two contrasting factors

result in the best clusters for boosting dock availability. Figure 1.8 shows that the

highest usage increase stations are a little more scattered around the map, not as

concentrated in the very center of the network as in Figure 1.7.
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Figure 1.7: Predicted evening rush hour usage increase after improving bike avail-
ability

Figure 1.8: Predicted evening rush hour usage increase after improving dock avail-
ability
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1.6 Conclusion

We study customer demand in the station network of the London bike share system.

Using our model and the estimated preference parameters, we provide guidance on

the network design and expansion of the system. We highlight the tradeoff between

the density and scope of a network in increasing overall usage. We also evaluate

a particular proposal of expansion to the Islington and Hackney areas of the city.

Our empirical results provide important insights and policy recommendations for the

managing company and the local government.

In the estimation of the structural demand model, we develop an instrumental

variable approach to deal with the endogeneity problem of the choice set. We show

that properly taking into account the endogeneity of choice set in the demand estima-

tion is important for both the estimated parameters and the policy recommendations

derived from the estimated model. The method can be applied to other empirical

settings in which understanding customer demand is important and products and

services can go out of stock.
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Chapter 2

Machine Learning in Demand Estimation in Long-Tail

Markets

2.1 Introduction

Structural estimation is an important tool of empirical studies in operations manage-

ment, economics, and marketing. It allows us to recover parameter values with mean-

ingful behavioral interpretations in decision models. Using those estimated models,

we are able to provide descriptive policy recommendations for managers and policy

makers to make better decisions. Demand estimation is a prominent example in such

structural estimation methods. We can estimate customer preference parameters for

various product or service features such as price using these tools. More importantly,

using the estimated models, we are able to provide prescriptive policy recommenda-

tions on important managerial decisions such as pricing, assortment, introduction of

new products, etc. to managers and policy makers.

Given the importance of these decisions to managers and policy makers, it is key

to recover the parameter estimates without bias in empirical studies. To achieve

this goal, many estimation routines have been developed in the literature [20, 3, 21].

The most commonly adopted is introduced by [20] (BLP). The method has two

main advantages. First, it allows for endogenous product or service features such as

price to be correlated with unobserved product or service features. Second, it allows

for heterogeneity in customer tastes captured by random coefficients in the utility

function. It has been widely applied in studying customer choice behavior in many
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different industries in operations management, economics, and marketing [70, 84, 56].

This is the method we focus on in the current paper.

One disadvantage of BLP is that the method exhibits major limitations when

the customer choice data has long tails. As discussed in detail in Section 2.2, BLP

does not allow products or services with zero sales to be included in the estimation.

Moreover, the method produces noisy estimates when products and services have very

low sales or market shares. However, in practice, as shown in Section 2.2, customer

choice data often has very long tails, i.e. many products and services offered have

zero sales or very low sales at a given period of observation. The phenomenon has

become increasingly common with big data and, in particular, large customer choices

in settings such as online retail. We show that common practices of dropping products

and services with zero and very low sales introduces bias in BLP estimates. Moreover,

the bias in estimates leads biased policy recommendations and managerial decisions.

In this chapter, we propose two new estimators that correct for the bias caused by

long tail data in BLP estimates. Both estimator have two stages. One is called two-

stage bound estimator which builds on the bound estimator proposed by [51]. The

other is called two-stage weighting estimator. The two estimators only differ in the

second stage. In the first stage of the two proposed estimators, we use deep learning

to predict the market shares of all products or services including those with zero or

low sales. In the second stage, we utilize the predicted shares from first stage to

correct for the bias in the estimation. More importantly, using the de-biased demand

estimates from our proposals in counterfactual analysis, we can correct for the bias

in policy recommendations and managerial decisions.

Our method of correcting for the bias in BLP estimates is analogous to the bias

correction often used in the classic literature of estimating treatment effects. We use

the predicted shares in the first stage to construct weights to correct for the bias in

the second stage of the estimation. This is similar to using estimated propensity score
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to construct weights or matches to correct for bias in estimating treatment effects.

To the best of our knowledge, there is only one recent paper in the econometrics

literature that studies the same problem. [51] proposes a bound estimator to correct

for the bias. The limitation of their approach is that it can only allow for a few

covariates with continuous values. While the second stage of our two-stage bound

estimator has similarities to [51], it does not have any limitation on the dimension

of the covariates and improves on the precision of the [51] estimator. We provide

detailed comparison of the two approaches and their performances later in the paper.

Our two-stage weighting estimator is based on entirely different ideas than bound

estimator.

The rest of the chapter is organized as follows. Section 2.2 provides examples of

long tail data and explains the source of bias. Section 2.3 provides a brief description

of the two-stage estimator. We describe the detailed construction of the estimator in

Section 2.4. We show the simulation results in Section 2.6. We are in the process of

implementing our method in real data, which is to be added to the paper next.

2.2 Bias in Demand Estimation with Zero’s

2.2.1 Long-tail pattern in empirical data

As pointed out in [51], long tail patterns arise in typical demand data like the

workhorse store level scanner data. Such data sets are used in a huge empirical

literature to estimate consumer preference. To recall the empirical pattern, we first

take another look at the Dominick’s Finer Foods grocery chain data, which is also

used by [51].

The data set in Table 2.1 is at a store/week/UPC level where UPC stands for

universal product code. The first column shows the production categories we are

aggregating demand information. The second column calculate the average number

61



www.manaraa.com

Category

Avg num of
products in a
store/week pair

Percent of
total sales of

the top 20% products

Percent of
Zero Sales

Laundry Detergents 200 65.52% 50.46%

Soaps 140 77.26% 44.39%

Toothbrushes 137 73.69% 58.63%

Beers 179 87.18% 50.45%

Crackers 112 81.63% 37.33%

Table 2.1: Selected Product Categories in the Dominick’s Database [51]

of UPCs in a (store, week) pair. The third column shows presents the percentage

of total sales that are from top 20% best sellers while the last column averages the

percentage of zero sales product across all (store, week) pairs. We can easily see that

sales are heavily concentrated on top selling products: top 20% takes nearly 80% of

the market share and the percentage of zero sales product in an average (store, week)

pair is quite large. Take Laundry Detergents as an example: on average 65.52% of

sales are from top 20% best sellers and half of the detergent products do not sell at

all for an average (store, week) pair.

As argued in [51] and Anderson (2006), this long-tail pattern is quite univer-

sal. It is becoming even more prevalent nowadays thanks to more granular data for

customers, products and markets at finer time scale becoming available and online

retailers/platforms offering much larger assortments than ever before. For example,

Airbnb has over 30,000 listings for New York city in 20171 and Amazon has millions

of products offered to customers. We give a detailed example using London’s Bike

Share System data from [58]. In Table 2.2, we show the percentage of zero usage

biking routes, defined as (starting station, ending station) pair, from 2017 data. We

aggregate routes based on distance percentile where distance is simply calculated as

the shortest distance on earth between starting and ending stations. The first column

1http://www.crainsnewyork.com/reports/airbnb-data/#!/
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shows the distance percentile buckets while the second column calculates within that

bucket, the percentage of biking routes that have never been used throughout 2017.

We see that clearly as distance gets longer, the percentage of zero routes increases as

expected. However, even around median distance say 50%− 60%, there are already

40.6% of routes have 0 usage for the entire year. If we want to study route usage at

weekly or monthly level as opposed to yearly, these numbers will be even higher.

With the observations above, we formally defined long-tail pattern in our context

as the phenomenon that empirical frequency of quantities of sales or market shares

drop very fast as sales/market shares increase, leaving a long thin right tail. It implies

that many products will not have lots of sales and that market shares are concentrated

heavily in the top-selling products. In these long-tail data sets, we often observe a

large fraction of products having zero sales.

Another observation is that in modern “big data” applications, not only do we

often observe long-tail pattern, more and more features are available to researchers.

For example, in the study of London bike share system by [58], there are more than

100 features in the original data that can be utilized in the demand estimation. It is

important that demand estimation techniques can scale up well as the number of co-

variates grow. In this work, we use machine learning tools to ensure that our proposal

to estimate demand in long-tail markets scales well with number of predictors.

2.2.2 Bias in common practice

Now that we see that long-tail pattern is very common, we describe in this subsection

why long-tail market share data matters to demand estimation and why it is impor-

tant to correctly account for it in order to get unbiased demand estimate and make

optimal managerial decisions.

As pointed in the demand estimation literature [77, 51] , the standard structural

demand estimation method BLP [20] cannot take data points with zero market shares
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Distance percentile Zero routes %

0-10% 4.7%
10-20% 5.3%
20-30% 9.7%
30-40% 17.2%
40-50% 27.0%
50-60% 40.6%
60-70% 55.2%
70-80% 68.2%
80-90% 81.9%
90-100% 94.5%

Table 2.2: Zero usage routes in the London bike share system [58]

since as shown later, the estimation algorithm breaks down when it tries to take log of

the 0 market share. This breakdown makes empirical researcher must deal with zero

sales data point in long-tail market. Usually there are two different ways to address

long-tail pattern: one is to aggregate products up to larger categories so that the

long-tail pattern is not that severe and percentage of zero sales products become very

low; the other one is to directly ignore all zero sales product in the data. Sometimes

the two are used together. It turns out that both solutions are problematic.

The first common practice is aggregating into larger product categories and treat-

ing those categories as the new “products”. This will lose variation from more gran-

ular data. More importantly we will miss the substitution effects between products

within category.

Whether or not we do further aggregation, another common practice is to throw

away the zero sales data. This practice amounts to subset selection and the subset

we are using the product with strictly positive (> 0) sales. Often the subset selection

is even more extreme: for example we not only throw away 0 sales products but

also throw all products except for the 20% top selling products in our estimation.

Intuitively, this subset used in estimation is not a random subset selected from original
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data, which raises the big question that whether such selection will lead to bias in

our estimates. Indeed, there is a big selection bias introduced by subset selection, as

pointed out by [51]. We briefly explain the bias next. The discussion below largely

follows from [51] and [20].

2.2.2.1 BLP estimation

We first provide a brief description of the classic BLP estimation framework.

Denote total number of markets observed as T and in each market t there are Jt

products offered. The observation unit will be (product, market) pair (j, t). There

are nt, t = 1, 2, ..., T consumers in total in market t. For each jt, we model consumer

i’s utility of purchase jt as given by

uijt = x′
jtβi + ξjt + εijt, (2.1)

where xjt of dimension dx is the product features observed by us as researchers.

Coefficients of interests βi denote how each xjt affect consumer utility. Also there

are unobserved product features denoted as ξjt which can approximate things like

unobserved quality, brand reputation etc. It is almost always the case that we are

not able to observe all features that matter to consumers and thus it is important for

the model to allow for such unobserved characteristics. Lastly we assume that εijt has

extreme value distribution and that consumer can also choose to purchase nothing.

We call that as outside option and denote outside option at market t as 0t. We

normalize outside options’ utility to be 0, i.e., ui0t = 0 for any i, t. Every customer i

in market t makes a choice among outside option 0t and products jt, j = 1, 2, ..., Jt

by maximizing her utility.

Standard random coefficients specifications assume that demeaned beta β̃i :=

βi − E[βi] follows a normal distribution with β̃i ∼ N (0,Σβ) where Σβ is a dm by

dm covariance matrix. We usually assume that it is a diagonal matrix and denote

its diagonal elements by a column vector λ. Let β := E[βi]. Thus, the preference
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parameter we want to estimate is θ := [β′, λ′]′ and denote the true values by θ0 :=

[β′
0, λ

′
0]

′. Define δjt := x′
jtβ + ξjt.

The distribution assumption on εijt leads to a closed form solution for choice

probabilities of consumer i in market t choosing jt given β̃i,

P[i chooses j|β̃i] =
eδjt+x′

jtβ̃i

1 +
∑Jt

k=1 e
δkt+x′

ktβ̃i

The true choice probability or market share of product j in market t is then given

by

πjt =

∫
β̃

eδjt+x′
jtβ̃

1 +
∑Jt

k=1 e
δkt+x′

ktβ̃
dP(β̃) β̃i ∼ N (0, λi), i = 1, 2, ..., p (2.2)

Then the true choice probability for outside option is given by π0t = 1−∑Jt
j=1 πjt

for each market t.

Let st := (s0t, s1t, s2t, ..., sJtt) t = 1, 2, ..., T be market shares observed in the

data. We also call s as empirical shares. We assume that the numbers of purchases

in each market denoted by Nt, t = 1, 2, ..., T are known to the researcher. Further

assume st’s are generated by multinomial sampling based on Nt i.i.d. customers

making purchasing decisions by true choice probability πt. To be precise,

sjt =

∑Nt

i=1 1ith customer chooses j

Nt

∀t = 1, ..., T, j = 0, ..., Jt (2.3)

Note that empirical shares include the shares of outside options, which is represented

by j = 0 for each market t. Also note that fixing any market t, as Nt →∞, empirical

shares are consistent estimators for true choice probability, i.e., sjt → πjt for any

j = 0, 1, ..., Jt if say the number of products Jt remains the same.

Let δt ∈ R
Jt t = 1, 2, ..., T be δt := (δ1, δ2, ..., δJt)

′ for each market t and similarly,

define πt := (π1t, π2t, ..., πJtt)
′ and xt := (x′

1t, x
′
2t, ..., x

′
Jtt
)′. Let function σ(δt, xt, λ) be

the mapping from mean utility δt, observable features xt in a market t to true market
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share/choice probability given λ. To be precise, σ(·; xt, λ) is a mapping from R
Jt

to region
{
x ∈ R

Jt : x > 0,
∑Jt

j=1 xj < 1
}
⊂ R

Jt such that for any market t and any

product j = 1, 2, ..., Jt,

σj(δt; xt, λ) :=

∫
β̃

eδjt+x′
jtβ̃

1 +
∑Jt

k=1 e
δkt+x′

ktβ̃
dP(β̃) β̃i ∼ N (0, λi), i = 1, 2, ..., p (2.4)

Without a closed-form formula for the integral in equation (2.4), usually we use

Monte-Carlo simulations to approximate the integral or expectation with respect to

β̃i’s. Based on Berry (2006), function σ defined in equation (2.4) is invertible under

general assumptions. We could define the inverse function as σ−1. Note that this

inversion function is even harder to compute. Originally, [20] uses a contraction

mapping algorithm to compute σ−1. Standard BLP assumes next that πt ≈ st and

σ−1(st; xt, λ) ≈ σ−1(πt; xt, λ) for all t = 1, 2, ..., T , xt ∈ R
Jt×p and λ ∈ R

p.

We use zjt ∈ R
dz to denote instruments for covariates xjt, where dz denotes the

number of instruments2. We follow general methods of moments (GMM) framework

and the moment conditions we rely on to identify parameters is E[ξjt|zjt] = 0. Let W

be the weighting matrix for different moment conditions. We minimize the empirical

analog of E[ξjtzjt] = 0 to find our estimates. To be precise, we minimize the following

objective function to get θ̂ = (β̂′, λ̂′)′:

min
θ=(β′,λ′)′

T∑
t=1

Jt∑
j=1

(zjt(σ
−1(st, xt, λ)− x′

jtβ))
′Wzjt(σ

−1(st, xt, λ)− x′
jtβ) (2.5)

As pointed out by [83], the contraction mapping inside the optimization problem

2.5 of standard BLP estimation will make the procedure numerically unstable. [83]

proposes using optimization with non-linear constraints to deal with computation of

σ−1. Let J :=
∑T

t=1 Jt be the total number of products across all markets. The new

optimization problem is given by,

2Note that in the particular case of no endogeneous covariates, we have dz = dx and zjt = xjt
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min
β∈Rp,λ∈Rp,δ∈RJ

T∑
t=1

Jt∑
j=1

(
zjt

(
δjt − x′

jtβ
))′

W
(
zjt

(
δjt − x′

jtβ
))

(2.6)

s.t. σ (δt; xt, λ) = st ∀t = 1, 2, ..., T (2.7)

The above formulation is often called Mathematical Programming with Equilib-

rium Constraints (MPEC). We can easily see that this problem is non-convex due to

the nonlinear equality constraints. However, we only need to compute σ instead of

σ−1, which does not need the contraction mapping routine. Also note that δjt’s are

additional variables introduced for the solver to optimize over together with β and

λ. In the simulation experiments of this work, we focus on MPEC formulation for its

numerical advantages over contraction mapping. Effectively, we are doing the same

inversion step (calculating σ−1) by enforcing the constraints in (2.7) that matches

model predicted shares to observed shares, instead of contraction mapping proposed

by [20]

It is obvious that πjt =
∫
β̃i

e
δjt+x′jtβ̃i

1+
∑Jt

k=1 e
δkt+x′

kt
β̃i
dP(β̃i) is strictly positive since logit

probability is strictly positive, i.e., e
δjt+x′jtβ̃i

1+
∑Jt

k=1 e
δkt+x′

kt
β̃i

> 0. Therefore πt = σ(δt; xt, λ) >

0 element-wise for any values of δt, xt and λ. This means that in the random coef-

ficient model, model predicted market shares are strictly positive. Therefore, when

we try to invert observed market shares from data, if for some (j, t), sjt = 0, then

corresponding δjt = σ−1(st; xt, λ) has to be −Inf and this the exact reason why

BLP estimation becomes infeasible when there are 0’s in market shares data s. The

same problem occurs regardless of whether we are using BLP contraction mapping

or MPEC formulation to evaluate σ−1. Indeed, even if we are using MPEC, the con-

straints in (2.7) with sjt = 0 will be infeasible for any values of the input variables.

The most common way to deal with this minus infinity issue is to just throw away

(j, t) with sjt = 0, which will cause biased estimates in a way similar to the classic

selection bias problem in economics. We explain this bias in the next subsection.
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2.2.2.2 Source of the bias using selected subset

The source of the bias with subset selection in our estimation is similar to the classic

selection bias problems as described in [90]. In this subsection we assume that there

is only one covariate and it is exogeneous to illustrate the intuition of the bias. The

exposition here follows largely from [51]. Under these simplifying assumptions we

have dx = dz = 1 and xjt = zjt. The identification of our preference parameters

comes from the moment condition

E [ξjt|xjt] = 0

If, however, we apply some thresholdM on sjt and only take the subset (j, t) : sjt > M

in the estimation, then the moment condition will be violated in the following sense

E [ξjt|xjt, sjt > M ] �= 0

As described above, a typical choice of M is M = 0 to deal with the inversion

problem of σ function. There are also many empirical studies only considering top

selling products, where M can be large too.

To illustrate the bias, we give two examples. Firstly, without loss of generality

we have E[ξjt] = 0 when covariates x has an intercept column (a column of 1’s).

However, after selection on sjt > M , we will tend to select products with more

attractive unobserved characteristics ξ into our estimation subset. As a result, if we

focus on (j, t) that satisfies sjt > M , the mean of ξjt will not be zero anymore and

shift towards positive territory, i.e., E[ξjt|sjt > M ] > 0.

Secondly, to provide more intuition about the source of the bias, consider the

following example. Assume that the true value β0 > 0 for the only one covariate,

meaning that the higher this attribute, the more attractive the product is to con-

sumers. If in the selected subset we see a product with very low xjt and yet we

observe large enough sales sjt > M , then we know that ξjt must be very large and
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that it is the very attractive unobserved characteristic that makes some customers

choose this product (j, t). As a result, we have a negative correlation between x and

ξ in the selected subset where sjt > M . That is,

Cov(xjt, ξjt|sjt > M) < 0

This will result in our estimator converging to a value that is smaller than β0 in

large sample. If we take these biased estimates into downstream task such as new

product design, pricing or assortment optimization, we will likely to arrive at sub-

optimal decisions. The bias caused by subset selection in the current settings is very

similar to classic selection bias problems in the econometrics literature [90]. In classic

selection bias settings, the selection process is often straightforward: for example, it

can be individuals selecting themselves into some treatment. However, the subset

selection in the current setting results from the particular estimation routine of the

BLP framework, which cannot take zero-share products.

To summarize, the selection bias can be severe and common in demand estimation

in long-tail markets, which often arise in empirical applications, especially in modern

“big data” world. Being able to correct for the bias is crucial, especially if we do

not want our biased estimate to affect downstream task and lead to misinformed

managerial decisions.

2.3 Description of Proposed Two-Stage

Estimators

Here we briefly described our proposed solution and some intuition. We call our

propose Two-stage Estimators. As the name suggests, it consists of two stages, where

the first stage our task is pure predictive and the second stage we obtain estimates

for the casual parameters of interests.
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Stage 1: prediction stage

In the first stage, the goal is to train machine learning models to predict market

shares sjt using instruments zjt. We store the final predicted shares denoted by ŝjt

for future use during second stage.

At this stage, we will be using data of all products including the ones with zero

sales, i.e., sjt = 0. We also apply cross-fitting procedure similar to [30] and [73] in

this stage. We postpone the details of the discussion till the next section. The output

of this stage is the predicted market shares ŝjt for all (j, t). One might think that, we

could choose a range of machine learning algorithms such as random forest, gradient

boosting and deep neuron network to fit to target sjt using features (zjt. However,

there is one complication here: the market share of a product j in market t does not

only depend on its own characteristics zjt but also depends on its values for other

competing products in the same market. It is not possible either to build a regressor

to predict st or sjt using zt := (z1t, z2t, ..., zJtt)
′ because the number of products in

different markets can be different and machine learning algorithms require a fixed

dimensionality for input features. We propose a new market share predictor based

on deep learning models inspired by mixed logit functional form. In our simulation

results we test the performance of our new proposal.

Stage 2: estimation stage

In the second stage, we only keep the subset with positive sales, i.e. sjt > 0 but we

utilize the predicted market shares ŝjt from the first stage to correct for the selection

bias and consistently estimate the preference parameters θ.

Before going into the details of the procedure which is provided in the next section,

we discuss the intuition of the procedure. We can think of the high level ideas to

be assigning (j, t) pair with higher ŝjt more weights and (j, t) pair with lower ŝjt

less weights. We will be grouping product market pair (j, t) into different buckets
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based on predicted market shares ŝjt and treat them differently. To contrast with

this, standard BLP method gives all product with positive sales equal weights. The

reason we want to adjust weights this way is that the products with higher predicted

shares are less vulnerable to selection bias since they are going to have positive sales

and end up in the estimation subset anyway. However, if we focus on the bucket

of (product, market) pair with extremely low predicted market shares, within this

bucket subset selection based on realized market shares sjt > M will generate the

most severe selection bias, because intuitively the products here are very likely to have

0 observed sales and it heavily depends on the draw on unobserved characteristics ξjt:

if ξjt is very positive then sjt could have some chance being greater thanM ; otherwise,

however, it will almost certainly be < M and be left outside the estimation subset.

As a result, if we select subset based on sjt > M , the distribution of ξjt in the selected

estimation subset will be severely tilted.

The exact way we carry out this weighting is similar to the bound estimator

proposed by [51] and will be described in section 4 in details. To compare our proposal

versus bound estimator by [51], one analogy would be in propensity score matching

vs. matching by covariates in causal inference literature. The way [51] forms buckets

(which is called hypercubes in [51]) and grouping (j, t)’s is like doing matching by

covariates where the covariates are instruments zjt. With the help of a first stage, our

proposal forms buckets and groups (j, t)’s based on a one-dimensional variable, the

predicted market shares ŝjt, which is like doing matching by propensity score where

ŝjt serves as the propensity score. For propensity score it is shown that matching by

(or conditioning on) propensity score is sufficient to ensure unbiased treatment effect

estimates while here in our context we assume that predicted share function E[sjt|zjt]
is a sufficient statistic that we need to control for in order to eliminate selection bias.

The difference is that in causal inference, we match by covariates or propensity score

to group similar units from treatment and control together into one bucket in order to
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recover the true treatment effects while here we do not have treatment minus control

but here our objective function is a sum of contributions from each bucket as shown

in details in Section 2.4.

One main advantage of our two-stage estimator over bound estimator, similar to

the advantage of matching by propensity scores over matching by covariates, is that

our proposal scales much better as the number of instruments dz grow. Because of

the curse of dimensionality, even with moderate dz, bound estimator could become

inaccurate since it is impossible to find good matches.

2.4 Two-Stage Bound Estimator

We formally describe our algorithm in detailed steps below.

2.4.1 Stage 1: prediction

We formulate the nonparametric estimation problem for market shares. We have T

markets and for each market t = 1, ...T we know that there are Jt+1 products being

sold there. For any product j in market t, (j, t) where j = 0, 1, 2, ...Jt, we observed

its market share sjt ∈ [0, 1] and note that
∑Jt

j=0 sjt = 1 for all markets t. j = 0 always

denotes outside option. The goal is to be able to predict this market share sjt for

each (j, t). Note that we can observe products with 0 market shares and we want our

model to do well on those products too.

We may have features about the consumers in particular market t (say average

consumer age, income etc..). But just to start off simple, we assume that we only

have access to product-level features. Assume for each product market pair, (j, t) we

observe a p dimensional vector zjt, which is the value of instruments. Our fitted model

will output a number ŝjt for each (j, t) as the predicted market share. It is crucial

that the input features to our machine learning model in this stage are instruments
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zjt instead of covariates xjt. This is to ensure that we are making prediction based

on something exogeneous to unobservable characteristics and the reason for that will

be clear later on. Note that in the special cases where all covarites are exogeneous,

instruments and covariates are the same, i.e., zjt = xjt. Sometimes in BLP we apply

nonlinear transformations of instruments to use as additional instruments. This is

related to the discussion of optimal instruments. We note that this is not necessary

here in our first stage since we will be using highly non-linear machine learning

methods. Including self-computed nonlinear transformation might be useful for a

different reason. In machine learning tasks one might be able to get better predictive

performance if researchers with some prior can precompute some transformations of

raw feature variables that are important and correlated to the target variable and this

is usually called feature engineering. Nonlinear transformation of original instruments

might be useful in this fashion. In our simulation exercise, we just use the original

instruments without adding additional nonlinear transformation of them.

The difficulties of directly applying any machine learning algorithms is that we

are predicting a number between 0 and 1 and that the target share depends on the

characteristics zjt of other products in the same market t. To give a concrete example,

let’s say zjt is of dimension 1 and represents some attractive feature: the higher the

value, the better the products. If for market t1, there are only two products being

offered where z1t1 = 1 and z2t1 = 1, then we expect these two products to have

similar market shares. For some other market t2, however, we have z1t2 = 1 again

but z1t2 = 10000. Then people in this market will prefer the second product (2, t2)

much more than (1, t2). We can imagine that if our machine learning algorithm only

has knowledge of products’ own characteristics, it will do a very poor job predicting

market shares for (1, t1) and (1, t2) since they have the same z1t1 = z1t2 = 1 but they

are very likely to have dramatically different market shares or sales. This example

might be a bit extreme but is able to illustrate our points.
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One might think of an easy workaround to be including all products’ z values

in the feature input of machine learning algorithms. However that wouldn’t work

on well either since different markets could have different number of products. For

example, if in some market t1, there are only two products being offered while in

another market t2, we have 10000 products being offered. In this case, if we want to

train a machine learning model that includes zjt for all j = 1, ..., Jt in the same market

t when predicting market share for (j, t), we will have a problem since for market t1,

the dimension of input features to our machine learning algorithm would be 2dz while

for market t2, the dimension is 10000dz. This is not feasible since machine learning

algorithms do require a fixed length of input features. We describe our proposal next.

2.4.1.1 Deep market share model

The idea to overcome the difficulties of directly applying machine learning lies in the

structure of discrete choice models. We first pose the familiar logit functional form

to model choice probabilities but instead of a linear functional form, we use a general

functions f on the exponents. That is

pjt(w) =
ef(zjt)

1 +
∑Jt

k=1 e
f(zkt)

(2.8)

, where pjt denotes the model choice probability for (j, t). Note that logit transfor-

mation used above is very similar to the softmax functions that are commonly used

in neuron network, we can try to use neuron network to do general predictions for

market share. We call the resulting neuron network structure as deep demand net

and we describte the structure below. In Equation (2.8), we use a general mapping

function f : Rp → R, where p = dz is the number of features we observe. In our deep

market share model, we specify f in (2.8) using Neuron Network and the network

structure for f can be simple or complex, shallow or deep. Note that we can recover

the standard logit functional form if we set function f to be just a one layer neuron
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network without hidden layer and nonlinear activation functions, i.e., f(x) = x′w

where w denotes the free parameters of the neuron network structure.

Again, we use w to denote all free parameters in the neuron network structure we

specify for f . Some times we call them trainable weights in the neuron networks. We

are then able to minimize the following loss L2 function over w:

min
w

T∑
t=1

Jt∑
j=1

(pjt(w)− sjt)
2 (2.9)

Note that products with 0 sales, i.e., sjt = 0, are included also in the evaluations

of above loss functions.

Note that even though we can specify arbitrarily complex neuron network struc-

ture so that f can be very complicated, the above formulation of pjt in Equation

(2.8) still has the independence of irrelevant alternatives (IIA) assumption. We can

overcome it thanks to the mixed logit idea: we could duplicate the same neuron

network structure n times, where n can be thought of as number of “representative

customers”. That is, we have fi,i = 1, 2, ...n and all n models have exactly the same

network structure but they do not share the same parameter values: denote their

weights by wi, i = 1, 2..., n. Then following the random coefficient or mixed logit

model, the final model predicted market share for market product pair (j, t) is given

by,

pjt(w) =
1

n

n∑
i=1

efi(xjt)

1 +
∑Jt

k=1 e
fi(xkt)

(2.10)

Note that n is not a trainable parameter and we need to specify n first. In

simulation we use n = 100. We minimize the same loss function, but over all wi:

min
wi,i=1,2,...n

T∑
t=1

Jt∑
j=1

(pjt(w)− sjt)
2 (2.11)

Note that this formulation includes the traditional random coefficient model as

a special case. To see this, we can specify all f ’s as a one-layer neuron network:

fi (x) = x′wi, where wi’s are parameters to fit with restrictions: wi for i = 1, 2, ..., n
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are normally distributed with certain mean and variance where only the mean and

variance are free parameters to fit.

Our formulation in Equation (2.10) is much more flexible than traditional random

coefficient model in two ways:

1) fi can be highly nonlinear and deal with large number of covariates easily,

unlike the traditional linear utility framework

2) The heterogeneity in customers are not restricted to normal distribution as in

the traditional random coefficient models. For example, it could well be a mixture of

two normals and our model should be able to fit it very well.

Because of the L2 norm loss function used in (2.11), the population minimizer

would be the conditional expectation of observed shares sjt conditional on zt, i.e.

E [sjt|zt], where zt = (z1t, z2t, ..., zJtt). Since by assumption observed shares sjt are

generated by multinomial sampling with true choice probability πjt and the multino-

mial sampling is independent with everything else, we have that

E [sjt|zt] = E [πjt|zt]

Therefore, our first stage procedure is trying to estimate this unknown function

E [πjt|zt] using our deep market share model. We describe the detailed steps in the

next section. In fact, if the goal is purely prediction for market shares of certain

products in certain markets instead of recovering causal parameters of interests, we

could just stop here at the first stage. If we care about consistent estimation of causal

parameters of interests, then there is more to be done: we explain later how we could

use the estimate of E [πjt|zt] from first stage to correct for the selection bias and get

consistent estimate of causal parameters in stage 2. Intuitively, products (j, t) with

very high E [πjt|zt] would be less affected by selection bias since if we are more certain

that this product will have positive sales for extremely high probability. On the con-

trary, if E [πjt|zt] is very low for a particular product market pair (j, t), then we know

that this data point (j, t) will be problematic and contributing to biases in the final
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estimates since whether it will make it to the selected subset () for estimation or not

depends a lot on whether the random draw of ξjt is large or not. That means that

the selections on unobservables ξjt are much more severe for products with very low

E [πjt|zt] compared with products with very high E [πjt|zt]. And those (j, t)’s with

very small E [πjt|zt] are the ones we need to pay attention to if we want to correct

for the selection bias in the naive BLP procedure that throws away products with

0 sale or small sales. Note that when evaluating the expectation E [πjt|zt], the only

randomness is ξ conditional on z. We assume instrument variables researchers have

found are independent with unobservables ξ and thus the expectation is just with

respect to the unknown joint distribution of all ξ’s.

2.4.1.2 Detailed procedure

We will be training a deep market share model to predict market shares sjt (including

zero shares) using instrument zt (from all products in the same market t). We model

the shares based on Equation (2.10). We set n = 100 and for each fi, we only use

1 layer neuron network with linear activation function. That means that we are

modelling all fi’s, i = 1, 2, ..., 100 in Equation (2.10) as fi(zjt) = w′
izjt. We use

stochastic gradient descent as optimizer to fit the model to observed market shares

of all products (including 0-sale products). Denote our estimated version from deep

market share by f̂(zt) or simply ŝ. The true function we want to approximate is

denoted by f(zt) = E [πt|zt]. Note that f or f̂ is a mapping from R
Jt to R

Jt , where

Jt can vary across different t. Both f̂ and f are function of zt since they depend

on information from all products in the same market. We use subscript of f̂ and f

to denote the product market pair (j, t), i.e., fjt(zt) = E [πjt|zt] for any t and any

j = 1, 2, ..., Jt.

We next describe a procedure often called cross-fitting due to its similarity to

cross-validation. We randomly partition the entire data set denoted by I into two
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folds based on markets so that roughly T
2
markets of data are in the first half, denoted

as I1 and same number of markets in the second half, denoted as I2. Essentially, we

want to record out-of-fold predicted market shares. We train one machine learning

model on the first half using instruments zt to predict market shares sjt and denote

the model fitted there by f̂ I1(zt), where the superscript I1 indicates that the model

is trained on data I1. Note that we use \ to denote the set difference operation and

in our case I1 = I\I2. Then we make out-of-fold predictions on I2 to get f̂ I1(zt) for

all (j, t) ∈ I2 using f̂ I1 trained on I\I2 = I1. Similarly we train another deep market

share model using data from I2 and make predictions f̂ I2
jt (zt) for all (j, t) ∈ I1. We

use l to denote the fold assignment mapping, i.e., l(j, t) = I1 if and only if (j, t) ∈ I1

and similarly l(j, t) = I2 if and only if (j, t) ∈ I2. Then we can unify the notations:

for all (j, t) ∈ I, the out-of-fold predicted market shares are denoted by f̂
I\l(j,t)
jt (zt).

f̂
I\l(j,t)
jt (zt) for all (j, t) are computed and stored as our final output from first stage,

which will be used in the second stage to correct for selection bias.

Using our notations, a naive first stage will feed into second stage predictions

f̂ I
jt(zt) for ∀(j, t) ∈ I, where I is the entire data set. The difference between our

f̂
I\l(j,t)
jt (zt) and the naive version f̂ I

jt(zt) for ∀(j, t) ∈ I is that when we make pre-

dictions from trained machine learning models on a point (j, t), we ensure through

two-fold cross-fitting that the model has never seen this particular point (j, t) during

its training process. The name cross-fitting is partially due to the similarity to cross-

validation in machine learning. From [30] and the discussions therein, cross-fitting

can help prevent the bias introduced by using machine learning methods to estimate

nuisance parameters/functions from affecting our estimation of causal parameters

of interests. In our particular case, the causal parameters we want to estimate is

θ = (β′, λ′)′ while the nuisance function we will estimate in this first stage is f . The

intuition of cross-fitting is similar to cross-validation too. In cross-validation, the

goal is to evaluate a fitted machine learning model f̂ and if we do not perform cross-
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validation and directly make predictions on data points our model have seen during

training, the model performance will be biased and over-estimated. We thus perform

cross-validation and use out-of-fold predictions to evaluate the performance of fitted

model f̂ . In cross-fitting, the goal is not model evaluation. Instead, we want to take

the model predictions in a second stage to fit another model. Again, we want to avoid

biasing the results of the downstream fitting task in the second stage and thus we

use out-of-fold predictions, f̂
I\l(j,t)
jt (zt), instead of f̂ I

jt(zt). However, in our simulation

setup, we do not really find much difference between feeding f̂ I
jt(zt) vs. f̂

I\l(j,t)
jt (zt) for

∀(j, t) ∈ I into the second stage. As a result, later in our simulation results session

we only show the result without cross-fitting for simplicity.

Note that in the first stage nothing prevents from including 0’s in the machine

learning prediction task. We should incorporate the information from 0’s into our

final predictors f̂ .

We implement the first stage using a deep learning framework in Python called

Keras.

2.4.2 Stage 2: estimation

On a high level, we will only focus on first forming the buckets based on f̂
I\l(j,t)
jt (zt)

from first stage and then minimize our objective function which is the summation of

violations of moment inequality over all buckets, subject to constraints that observed

market shares equal to model predicted market shares, i.e.,

σj(δt; xt, λ) = sjt t = 1, 2, ..., T j = 1, 2, ..., Jt

We will cast our second stage estimation problem as MPEC formulation proposed

by [83]. We will introduce objective function and constraints in different subsec-

tions below. The only major difference between our second stage and standard BLP

estimator is the loss function we are minimizing.
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2.4.2.1 Objective function

Our objective function is very similar to the one used in bound estimator from [51].

We introduce some notations first:

We first apply Laplace transform of the observed market shares similar to [51].

Define s̃jt =
nsjt+1

n+Jt+1
. This will ensure that actually we can carry out the market share

inversion.

Next we introduce a conditional moment inequality from [51]. The following

moment inequalities hold at the true value of θ0 = (β0, λ0). We state the following

Lemma from [51] without proof. For details and the proof see [51].

Lemma 2.1.

E[δujt(λ0)− x′
jtβ0|zt] ≥ 0 ≥ E[δljt(λ0)− x′

jtβ0|zt] (2.12)

, where δujt and δljt are defined as

δujt (λ) := σ−1
j (s̃t, xt;λ)− log

(
s̃jt
s̃0t

)
+ log

(
s̃jt + η

s̃0t − η

)
(2.13)

δljt (λ) := σ−1
j (s̃t, xt;λ)− log

(
s̃jt
s̃0t

)
+ log

(
s̃jt − η

s̃0t + η

)
(2.14)

Same as bound estimator proposed by [51], our estimator’s loss function is baesd

on Equation (2.12).

Next we partition I and form buckets based on first stage output f̂ I
jt(zt). We

define a collection of intervals C as

C = {Ca,r : Ca,r = (
(a− 1)

2r
,
a

2r
], a ∈ {1, 2, ..., 2r}, r = r0, r0 + 1, ...} (2.15)

In practice we start r at r0 = 2 and cap it at rT = 50. For the value of η in the

definition of δujt and δljt, we follow the recommendation by [51] and set η = 10−6. We

can then group points (j, t) into buckets using the collection of indicator functions Ĝ
defined as
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Ĝ : =
{
ga,rjt : ga,rjt (zt) = 1{f̂I

jt(zt)∈Ca,r} for any Ca,r ∈ C, t = 1, 2, ..., T, j = 1, 2, ..., Jt

}

We utilize those inequalities to form our moment conditions for different buckets

formed by indicator functions ga,r’s in Ĝ:

E[
(
δujt(λ)− x′

jtβ
)
zjtg

a,r
jt (zt)] ≥ 0 (2.16)

E[
(
δljt(λ)− x′

jtβ
)
zjtg

a,r
jt (zt)] ≤ 0 (2.17)

Therefore our objective function would be minimizing over θ the sample analog

of Inequality (2.16) and (2.17). Define

ρ̄uT (θ, g) =
1

T J̄

T∑
t=1

(
Jt∑
j=1

(
δujt (λ)− x′

jtβ
)
zjtgjt (zt)

)
(2.18)

ρ̄lT (θ, g) =
1

T J̄

T∑
t=1

(
Jt∑
j=1

(
x′
jtβ − δljt (λ)

)
zjtgjt (zt)

)
(2.19)

Note that since zjt has dimension dz, both ρ̄uT (θ, g) and ρ̄lT (θ, g) have dimension

dz too. We define two loss functions below; one is feasible while the other is infeasible

since it has unknown population true function in its definition.

Q̂T

(
θ, Ĝ

)
=

∑
g∈Ĝ

(
[ρ̄uT (θ, g)]−

)′
[ρ̄uT (θ, g)]− +

∑
g∈Ĝ

([
ρ̄lT (θ, g)

]
−

)′ [
ρ̄lT (θ, g)

]
− (2.20)

,where [x]− := max(−x, 0)
Our objective function for second stage is then given below as

min
θ

Q̂T

(
θ, Ĝ

)
(2.21)

Note that Q̂T above depends on (θ, Ĝ) where θ is the value of causal parameters

of interest, z is the instruments empirical research decides to use and lastly Ĝ is
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the set of nuisance functions obtained with the help of first stage estimates. By the

definition of this objective function, we implicitly assume equal weighting between

different moment conditions and between different values of a, r for the g functions.

We opt for equal weighting for simplicity but there is nothing preventing us from

using the same weighting function as proposed in for example [51] and [5].

The main difference between our second stage and bound estimator in [51] is that

we have a first stage estimating fjt(zt) = E[πjt|zt] which is then used to form buckets

or hypercubes Ĝ while in bound estimator, there are no first stage and the hypercubes

are formed in a brute force way. This difference gives our estimators advantage as

the dimension of instrument zjt grows. Since in the framework of [51], even if we

just have a moderate number of instruments, we will encounter the so-called curse

of dimensionality problem and all hypercubes will have either 1 or 0 number of data

point in its. We basically estimate a 1-dimensional quantity, the predicted market

share from the first stage and then use this quantity to form hypercubes or buckets

in the second stage. The advantage of two-stage estimator over bound estimator by

[51] is very similar to the advantage of propensity score matching over matching by

covariates.

Our two-stage bound estimator essentially combines the idea of matching by

propensity score and bound estimator by [51] to improve the performance when the

dimensionality dz is large. The basic ideas behind the moment inequalities in (2.12)

and the resulting loss function (2.21) are the same as described in [51]. We briefly

recall the intuition here. We assume in the assumptions that there exists a subset

of product market pair that we consider as “safe set” in the sense that if we focus

our estimation on that subset alone, we will be able to recover causal parameters

consistently even if we have to throw away products with zero sale. The problem lies

in the rest “unsafe” products which are heavily affected by selection bias. The idea of

the upper and lower bounds in expression (2.12) is that for safe products, both upper
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and lower bounds become tighter and tighter as number of markets T goes to infinity

and eventually the upper and lower bounds come together and we have a moment

equality in the limit, instead of moment inequality. By assumptions, that moment

equality holds true only when θ equals to the true value θ0. That means that we are

able to identify true parameter values only using information from safe set. On the

other hand, since the unsafe products will bias the estimation results and thus we

want to control their contributions to the loss function that we are minimizing. It

turns out that, for unsafe products, both upper and lower bounds are satisfied for

any values of θ within a neighborhood.

2.4.2.2 Computation

We use the MPEC formulation from [83]. Instead of actually inverting the function

σ−1 using contraction mapping as in the original BLP paper [20], we enforce the con-

straints that model predicted shares are equal to empirical shares for better numerical

performance.

σ(δt; xt, λ) = s̃jt

Note that here we are using the Laplace shares s̃jt. This part is exactly the same

as the MPEC implementation of BLP estimator.

To sum up, in the second stage, we are solving the following optimization problem,

min
θ

Q̂T

(
θ, Ĝ

)
s.t. σ (δt; xt, λ) = s̃t for any t

We denote the solution of the above optimization problem as θ̂TS where the su-

perscript stands for “Two-stage”.
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2.5 Two-Stage Weighting Estimator

Here, we propose another two-stage estimator that differs from the two-stage bound

estimator described in section 2.4 only on the second stage. The weighting estimator

relies on a different idea, reweighting, which is different from the moment inequality

based arguments used in bound estimator. We want to give higher weights to products

that are less vulnerable to selection bias and vice versa. In our two-stage bound

estimator, we use first stage estimates f̂jt(zt) to weight different (j, t)’s. In this

section, we propose another two-stage estimator that directly assign weights in the

second stage, which is much more intuitive than bound estimator and two-stage

bound estimator. Also, it is very easy to implement, compared with two-stage bound

estimator and the original bound estimator.

Since the first stage is exactly the same as described in section 2.4.1. We directly

jump into the second stage.

2.5.1 Stage 2: reweighted BLP

The intuition of reweighting is that we want to assign lower weights to products

subject to higher degrees of selection effects (similar to unsafe products in two-stage

bound estimators) and use less information from them in our estimation of causal

parameters.

We take f̂ I
jt(zt) from first stage and form buckets based on the values of f̂ I

jt(zt). To

be precise, we rank product market pairs (j, t) based on f̂ I
jt(zt) and form K number

of buckets. During our simulation we set K = 80 and each of the 80 buckets has the

same number of (j, t) pairs. We denote buckets by Bk, k = 1, 2, ..., B where B1 has

products with the smallest predicted shares. For ∀(j, t) ∈ Bk, we assign them weights

equal to

wjt =

1
|Bk|

∑
(j′,t′)∈Bk:sj′t′>0 f̂

I
j′t′(z

′
t)

1
|Bk|

∑
(j′,t′)∈Bk:sj′t′>0 sj′t′

(2.22)

85



www.manaraa.com

In English, the weight for a (j, t) pair is the ratio between average predicted market

share and the average observed shares over products with positive sales within the

same bucket. Another key step is where we apply those weights. Actually, we multiply

observed shares sjt by wjt and apply BLP on the weighted shares ˙sjt := sjt ·wjt. The

procedure will be exactly the same as traditional BLP except for that we use first

stage estimates to reweight the empirically observed market shares before putting it

in the BLP estimation. Following MPEC implementation, the optimization problem

in the second stage of the proposed two-stage weighting estimator is then given by,

min
β∈Rp,λ∈Rp,δ∈RJ

T∑
t=1

Jt∑
j=1

(
zjt

(
δjt − x′

jtβ
))′

W
(
zjt

(
δjt − x′

jtβ
))

(2.23)

s.t. σ (δt; xt, λ) = ṡt ∀t = 1, 2, ..., T (2.24)

Comparing between the optimization problem above and the MPEC formulation

for standard BLP estimation, the objective function (2.23) is exactly the same as

(2.6). The only difference is in the constraints. In the right hand side of (2.24) we

use the reweighted version of observed market shares ṡjt while in (2.7) the original

observed shares sjt are used.

We explain the intuition of the second stage next. For product market pair (j, t)

subject to low degrees of selection, we have wjt ≈ 1 and thus everything is the

same as in standard BLP for those products. However, for “unsafe” products we

will be having wjt < 1 and the reweighting will push sjt down towards E[πjt|zt],
which reduces its contribution to moment conditions in the estimation. We show the

promising simulation results of two-stage reweighting estimator in the next section.

The inference part is still work in progress.
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2.6 Simulation

In this section we presents results from our simulation experiments and showcase our

proposed estimators’ performance compared with existing ones. Note that the results

in this section is preliminary and might change later in the actual paper.

2.6.1 Setup

We assume that there are in total T = 25 markets and for any market t, there are

nt = 10000 customers. The number of products in any market t is Jt = 50. Utility

of customer i purchasing j in market t is given below,

Uijt = β0 +
5∑

m=1

βimX
(m)
jt + ξjt + εijt

, where εijt is the standard logit error term, superscript X
(m)
jt denote the mth covari-

ate for product market pair (j, t). Note that we have in total 5 observed features

and the unobserved characteristics are generated as ξjt ∼ N (0, 0.5). All β(m)’s are

independent normal random variables with mean value 1 and standard deviation 0.5.

That is, βim ∼ N (1, 0.5), ∀m.

Among the five covariates, the first one X
(1)
jt is called vertical feature where it is

generated as X
(1)
jt = j

10
+N (0, 1), j = 1, 2, ..., 50. We call it vertical since there are

parts that has consistent values between markets in addition to some noisy making

different markets’ offering different. The rest four is called non-vertical features and

they are generated by X
(m)
jt = N (0, 1), j = 1, 2, ..., 50, m = 2, 3, 4, 5. All features

can be endogenous, but for simplicity here we assume all covariates are exogenous,

i.e., Xjt ⊥ ξjt. For traditional BLP throwing away products with 0 sales and our

proposed two-stage weighting estimator, instruments we will be using are given by

(Xjt, X
2
jt, X

3
jt− 3Xjt), which follows the choices in [51]. For bound estimator and our

two-stage bound estimator, we just use Xjt as instruments without applying further

non-linear transformation.
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We generate the data using the same setup 1000 times and try BLP, bound esti-

mator and our proposed two-stage estimators on all 1000 samples and compute the

average and standard deviation of the estimates. We show simulation results for two

cases: β0 = −10 and β0 = −12, which yield different percentage of zero sales prod-

ucts (which is calculated as the average number of zero sale products across all 1000

simulation runs).

2.6.2 Results

We present the simulation results for β0 = −10 in Table 2.3 below. Results for

β0 = −12 are in Table 2.4.

Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=26.6% (2017) Bound Estimator Weighting Estimator

β̄1 1.000 0.830 0.890 0.982 0.982
(0.003) (0.002) (0.007) (0.003)

β̄2 1.000 0.895 0.885 0.967 0.988
(0.003) (0.002) (0.010) (0.003)

λ1 0.500 0.670 0.451 0.482 0.530
(0.005) (0.002) (0.009) (0.004)

λ2 0.500 0.492 0.446 0.459 0.496
(0.005) (0.005) (0.017) (0.004)

Table 2.3: Simulation Results from 1000 Runs for β0 = −10 and σξ = 0.5

We only show the mean and variance estimate for the first two covariates to il-

lustrate the point. The first covariate is the vertical feature. We show the mean

estimates β̄ and standard deviation estimates λ for the first two random coefficients.

The column “True” shows the true value of the parameters and “BLP” column cor-

responds to standard BLP estimator where we throw away 0’s. The column “Gandhi

et al.” corresponds to the bound estimator from [51]. The column “Two-stage Bound

Estimator” shows the performance for two-stage bound estimator explained in section
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=41.8% (2017) Bound Estimator Weighting Estimator

β̄1 1.000 0.522 0.856 0.954 0.933
(0.009) (0.003) (0.011) (0.006)

β̄2 1.000 0.858 0.847 0.938 0.980
(0.003) (0.003) (0.012) (0.003)

λ1 0.500 0.791 0.430 0.463 0.550
(0.010) (0.003) (0.008) (0.006)

λ2 0.500 0.472 0.433 0.417 0.494
(0.007) (0.006) (0.019) (0.005)

Table 2.4: Simulation Results from 1000 Runs for β0 = −12 and σξ = 0.5

2.4 and the last column “Two-stage Reweighting Estimator” presents the result of

two-stage reweighting estimator described in section 2.5. We repeat 1000 times for

the same simulation setup and the estimates reported in the table are averaged across

all 1000 simulation runs. All numbers in parenthesis are the corresponding standard

errors, which are calculated from different simulation runs as well.

We can see that consistent with what [51] found, the standard BLP estimator

that leaves out the 0’s sale products will have very severe bias, especially for β on

the vertical feature. The bias is larger when the long-tail pattern is more severe,

comparing the “BLP” column from Table 2.3 and 2.4. Interestingly, also consistent

with [51], we found that the heterogeneity of vertical attributes (λ) will be biased

upwards while the magnitude of mean value of β is biased lower.

Note that the magnitude of the bias on β̄1 for β0 = −12 case is huge for BLP

estimator: it is almost half of the true value 1. Even with just 5 covariates, the

bound estimator does not perform very well: the estimate of β̄1, which is 0.856,

improves upon BLP estimates by a lot but is still 15% lower than the true value

1. More importantly, both β̄2 and λ2 are even a bit worse than BLP estimates.

Both our proposals, two-stage bound estimator and two-stage reweighting estimator,
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perform well in this simulation experiment in Table 2.3 and 2.4. They have less

bias than bound estimator by [51] in almost all 4 parameters presented here. In

particular, our two-stage weighting estimator looks very promising and performs the

best especially on estimating λ’s. It is also much simpler to implement than two-stage

bound estimator and the original bound estimator.

Considering how common long-tail pattern is in empirical applications in various

fields such as operations management, economics, and marketing, and how severe the

bias can be, it is important for researchers to correct for the selection bias in order

to recover true customer demand and make optimal managerial decisions.

2.7 Conclusion

We study classic demand estimation problem in long-tail data where direct application

of BLP framework leads to substantial bias in the estimates. That biased estimates

in turn could lead to sub-optimal decisions. We propose two different two-stage

estimators where machine learning algorithms are used in the first stage in order

to correct for the selection bias in standard BLP procedure. Our two-stage bound

estimator and two stage weighting estimator combines machine learning tools and

bound estimators proposed by [51]. It improves the performance of the original bound

estimator especially when the number of covaraites or instruments is larger than 5.

Our two-stage reweighting estimator tackles the problem in a completely different

way: we apply weighting to adjust the observed data so that directly applying BLP

on the reweighted data will give us correct estimates. Given how common long-tail

pattern is nowadays, our proposals could improve data-driven decision making in a

lot of empirical exercises in areas such as operations, economics and marketing.
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Part II

Financial Engineering and Machine

Learning Models in Asset Pricing
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Chapter 3

Buy Rough, Sell Smooth

3.1 Introduction

A recent line of research has found evidence that stock price volatility is rough, in the

sense that the evolution of volatility is rougher than the paths of ordinary Brownian

motion. The evidence for rough volatility comes from two sources: the time series

behavior of realized volatility, and an empirical regularity of option-implied volatility

at short maturities that turns out to be well explained by roughness. See [53], [13],

[50], [16], and [37] for background and further references.

Rough models of stochastic volatility replace an ordinary Brownian motion driv-

ing the dynamics of volatility with a fractional Brownian motion (fBM). The fBM

family, indexed by a single parameter, includes ordinary Brownian motion and also

processes with smoother and rougher paths. Empirical estimates here and in [53] and

[16] find parameter values smaller than 1/2 (the case of ordinary Brownian motion),

corresponding to rougher paths. We refer to these estimates as measures of realized

roughness.

By implied roughness, we mean estimates extracted from option prices. Implied

volatilities from equity put options are ordinarily skewed, meaning that they are

larger at lower strikes, particularly at short maturities. But the steepness of this

skew typically falls quickly as the maturity extends — more quickly than predicted

by most stochastic volatility models. Rough volatility models capture this feature.

Stocks with greater realized roughness exhibit fast mean-reversion in volatility; stocks
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with greater implied roughness exhibit a fast decay in their implied-volatility skew.

The implications of these empirical regularities have received little attention be-

yond option markets. In this article, we seek to shed light on the possible sources and

consequences of rough volatility by studying a trading strategy that trades stocks —

not options — based on roughness in volatility. We sort stocks based on measures

of realized or implied roughness and analyze a strategy that goes long the roughest

quintile and short the smoothest quantile. When sorted on implied roughness, the

strategy earns excess returns of 6% or more, after controlling for standard factors.

The strategy is profitable in 13 out of the 17 years in our sample, including 2007,

2008, and 2009. The strategy based on realized roughness earns somewhat lower

returns and is less robust to standard controls.

These results have several implications. First, they show that roughness matters

for stock returns and is not just a feature of option markets. Second, they point

to potential differences between implied and realized roughness, though in theory

the two should coincide. Third, we will argue that the profitability of our implied

rough-minus-smooth strategy reflects compensation for near-term idiosyncratic event

risk. The fast decay in the implied volatility skew associated with implied roughness

indicates near-term downside uncertainty that will be resolved quickly. We support

this interpretation by examining the performance of our strategy near two types

of events: our strategy earns higher returns near earnings announcements (which

mainly resolve company-specific uncertainty) and lower returns near interest rate

announcements by the Federal Reserve (which resolve market-wide uncertainty).

Efforts to date to model an underlying source of roughness have focused on market

microstructure and the splitting of large orders, particularly [38], [62]. However, these

models do not offer clear predictions on what types of stocks should exhibit greater

roughness, which limits their application to our setting. Nevertheless, we investigate

possible connections between roughness and market liquidity. We confirm a positive
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association between roughness and illiquidity (which may be seen as consistent with

[62]); but we also find that controlling for illiquidity reduces but does not eliminate the

profitability of our implied strategy. Moreover, this strategy is limited to stocks with

significant options trading, and these are generally larger and more liquid stocks. The

profitability of our strategy therefore cannot be explained by an illiquidity premium.

Our results present an interesting contrast to the work of [91]. They find that a

steep skew (corresponding to expensive puts at low strikes) forecasts negative earnings

surprises, a finding we confirm in more recent data. This pattern supports a strategy

of buying stocks with lower skews and selling stocks with steeper skews. One might

expect stocks with a faster skew decay (greater implied roughness) to start with

a steeper skew, in which case the strategy of [91] would lead to selling rough and

buying smooth, just the opposite of the strategy we find profitable. Moreover, we

find that roughness does not forecast earnings surprises, reinforcing the notion that

the profitability of rough-minus-smooth reflects compensation for risk rather than

cash flow predictability. Together these patterns indicate that the information in

roughness is distinct from the skewness measure in [91].

Section 3.2 provides background on realized and implied roughness, and it ex-

plains the procedures we use to estimate both quantities. In Section 3.3, we evaluate

the performance of strategies that buy the roughest quintile of stocks and short the

smoothest quintile of stocks each month. We evaluate strategies using realized and

implied measures of roughness, after controlling for standard factors. In Section 3.4,

we control for additional factors through double sorts that hedge out other effects,

including several measures of illiquidity and the levels of implied volatility and skew-

ness. We find that returns on the implied strategy are robust to these controls. We

also test robustness to these controls using [42] time-series averages of cross-sectional

regressions. In Section 3.5, we find that the performance of our strategy is enhanced

when restricted to stocks with earnings announcements in the subsequent month and
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diminished near Federal Reserve announcements. We interpret these findings as evi-

dence that rougher stocks (particularly as measured by implied roughness) are those

facing near-term downside uncertainty.

3.2 Realized and Implied Roughness

3.2.1 Realized Roughness

To discuss roughness, we first recall the definition of fractional Brownian motion; for

additional background, see [67] and Section 7.2 of [79]. A fractional Brownian motion

with Hurst parameter H ∈ (0, 1) is a mean-zero Gaussian process {WH
t ,−∞ < t <

∞} with stationary increments and covariance function given by

E[WH(t)WH(s)] =
1

2

(|t|2H + |s|2H − |t− s|2H) . (3.1)

The caseH = 1/2 corresponds to ordinary Brownian motion. WithH ∈ (1/2, 1), frac-

tional Brownian motion exhibits long-range dependence; processes with H ∈ (0, 1/2)

have paths that are rougher than those of ordinary Brownian motion, with small H

indicating greater roughness.

As one indication of greater roughness, we have the following property of the

moments of the increments of fractional Brownian motion. For any t ∈ R, and

Δ ≥ 0, and any q > 0,

E[|WH
t+Δ −WH

t |q] = E[|Z|q]ΔqH , Z ∼ N(0, 1). (3.2)

With smaller H, increments over a short interval Δ have larger moments.

As an example of a rough volatility model for an asset price {St, t ≥ 0}, we could
set

d log St = μ dt+ σt dWt (3.3)

d log σt = ν dWH
t ; (3.4)
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this is a special case of a single-factor version of what [53] call the rough Bergomi

model, after [17]. More generally, the model specifies a mean-reverting log volatility

process

d log σt = −κ(log σt −m) + ν dWH
t . (3.5)

Here, μ, κ, m, and ν are constants, W is an ordinary Brownian motion, WH is a

fractional Brownian motion with H ∈ (0, 1/2), and W and WH may be correlated.

The parameter H determines the roughness of the volatility process.

Empirical evidence for roughness in the time series of volatility can be found in

[53], [16], [64], and later in this chapter. [2] present an approximation method for

rough volatility models that suggests a simple interpretation: rough volatility arises

from mixing mean-reverting volatility processes with different speeds of mean rever-

sion, driven by an ordinary Brownian motion, including components with arbitrarily

fast mean reversion. The connection between roughness and fast mean reversion is

also supported by the analysis of option prices in [52].

If we could observe log σt at times t = 0,Δ, 2Δ, . . . for some small Δ > 0, we

could estimate H by estimating

E[| log σt+Δ − log σt|q] (3.6)

for various values of q > 0, and then applying (3.2) to extract H. This is the method

of [53], which they apply more generally to estimate roughness, without necessarily

assuming the specific model in (3.3)–(3.4) or (3.5).

In practice, σt cannot be observed and must be estimated, so we proceed as

follows. Using trades from the Trade and Quote (TAQ) data, we apply the realized

kernel method of [12] to estimate the daily integrated variance of returns; taking the

square root yields our estimated daily volatility.1 We obtained similar results using

1We use the non-flat Parzen kernel as implemented in Kevin Sheppard’s toolbox at
https://www.kevinsheppard.com/MFE Toolbox.
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the realized variance of 5-minute returns, but the realized kernel method is designed

to be less sensitive to microstructure noise.

The rest of the estimation procedure works with these daily volatilities, which we

write as σ̂d, with d indexing days. We apply (3.6) with q = 2, estimating second

moments over intervals of � days, � = 1, 2, . . . , 10. In each month, for each stock and

each lag �, we calculate

z2(�) =
1

T − �

T−�∑
d=1

(log σ̂d+� − log σ̂d)
2, (3.7)

where T is the number of days in the month. Based on (3.2), we expect

z2(�) ≈ ν2�2H .

We therefore run a regression

log z2(�) = β1 + β2 log �+ ε, (3.8)

to estimate H as β2/2. We also estimate the volatility of volatility ν by setting

log ν = β1/2. This procedure yields an estimate of H (and ν) for each stock in each

month.

[53] estimate (3.7) and (3.8) for moments of several orders q and then run a

regression of the slope in (3.8) against q. We find that using several moments rather

than just q = 2 leads to very similar estimates of H. 2

3.2.2 Implied Roughness

By implied roughness we mean the value of H obtained by fitting option prices to a

rough volatility model.

A conventional approach to evaluating an implied parameter would proceed as

follows. Choose a specific model with some free parameters — in this case, a rough

2In tests of alternative estimation methods on simulated data, for which we know H, we have
found that the main source of error is the estimation of the daily integrated variances σ̂2

d from
intraday returns, rather than the estimation of H from the daily volatilities.
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volatility model; find the parameters that bring the model’s option prices closest to

a set of market prices.

Applying this approach to extract H from option prices raises two issues. The first

is a practical consideration: pricing options in rough volatility models requires Monte

Carlo simulation, so inverting prices to evaluate H for hundreds of stocks and months

is computationally daunting. The second issue is more fundamental: a misspecified

model may lead to an incorrect value of H, even if the “true” volatility process in

rough.

To circumvent these issues, we follow a simpler and more robust approach, based

on the term structure of the at-the-money (ATM) skew. Write σBS(k, τ) for the Black-

Scholes implied volatility of an option with time-to-maturity τ and log-moneyness

k = log(K/S), where K is the option’s strike price and S is the current level of the

underlying. The ATM skew at maturity τ is given by

φ(τ) =

∣∣∣∣∂σBS (k, τ)

∂k

∣∣∣∣
k=0

(3.9)

An empirical regularity of the ATM skew is that it flattens at longer maturities.

This pattern is illustrated in Figure 3.1, which shows fitted implied volatilities for

JPMorgan Chase on June 5, 2012, using data from OptionMetrics. (We discuss the

details of the fitting procedure below.) The horizontal axis shows the ratio of the

strike price to the current stock price, so the ATM skew is the slope at a ratio of 1.

The different curves correspond to different maturities. The slope is steepest (most

negative) at the shortest maturity of three days and quickly flattens as we move to

longer maturities.

The expansions of [49], [13], [37], and [44] characterize the rate of decay of the

ATM skew for a very broad range of rough volatility models. These results (in

particular as in [49]) show that the ATM skew admits an approximation of the form

φ(τ) ≈ constant× τH−1/2, as τ ↓ 0. (3.10)
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Figure 3.1: JPM implied volatilities on June 5, 2012. The curves show cubic spline
fits at various maturities using raw data from OptionMetrics, plotted against the
ratio of the put strike K to the spot price S. The ATM skew is the slope at K/S = 1.
Its absolute value falls quickly as the maturity increases.

In other words, the ATM skew exhibits a power law decay at short maturities, with

an exponent determined by H.

This idea is illustrated in Figure 3.2, which replicates similar figures in [53]. The

horizontal axis records time-to-maturity τ , and the vertical axis records ATM skew

φ(τ). Each dot in the figure shows an estimate of φ(τ), all calculated on September

15, 2005 (left panel) or June 20, 2013 (right panel), based on OptionMetrics data.

The smooth curve in the figure shows a power law fit to the data, from which we

estimate the exponent. In this example, the exponents are −0.48 (left) and −0.452
(right) corresponding to H = .02 and H = 0.048, respectively.

This is the approach we will use to calculate an option-implied value of H, after

providing details of the calculation. The method is easy to use and readily lends itself

to evaluating an implied H for hundreds of stocks, each day for nearly 20 years. The

method is robust because it exploits the general property of rough volatility models

in (3.9) rather than the detailed structure of a specific model.

Some may object to using the rate of decay of the ATM skew to extract an implied
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Figure 3.2: Term structure of the ATM skew for the S&P 500 index, as in similar
figures in [53]. The charts plot the slope of the ATM skew against option maturity
on Sep 15, 2005 (left) and Jun 20, 2013 (right), using OptionMetrics data.

measure of roughness on the grounds that certain stochastic volatility models driven

by ordinary Brownian motion may also be able to fit the term structure of φ. For

example, [18] fit what appears to be a power law decay using a linear combination of

two exponentials. Some might prefer to follow the more conventional approach with

which we began this section, fitting a specific model to market prices and finding the

value of H that fits best. But if the model fits option prices well, that approach will

lead to the same value of H because if the model fits the data, then the market prices

satisfy (3.10). Using (3.10) directly is simply a more efficient and more robust way

of arriving at the implied H. Calling it implied roughness is also much simpler than

calling it the rate of decay of the ATM skew (plus 1/2).

To carry out this approach, we proceed as follows. First, we merge CRSP and

OptionMetrics data to link stock prices and option prices. Next, we filter out options

following standard rules in the literature; these are detailed in the appendix. On

each day for each stock, using only the filtered data, we use a cubic spline to fit

implied volatility as a function of log(K/S). We take the derivative of the spline at

log(K/S) = 0 as the ATM skew φ(τ). Then we run a regression

log φ(τ) = c+ (H − 1/2) log τ + ε;

that is, we add 1/2 to the estimated slope in this regression to evaluate the implied
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H.

In addition to the realized measure discussed in Section 3.2.1 and the implied

measure discussed here, we have tested a third measure — realized roughness of

implied volatility, as in [64]. In this approach, for each stock we take the ATM

implied volatility, and we evaluate the realized roughness (following (3.7)–(3.8)) from

the stock’s time series of implied volatility. We have found that investment results

based on this measure are very similar to those using realized roughness, so we do

not discuss them further.

3.2.3 Descriptive Statistics of Realized and Implied

Roughness

Our focus is on the cross-sectional relationship between roughness and stock returns,

so in Table 3.1 we present summary statistics on the cross-sectional variation of

implied and realized roughness. In each month we calculate the mean, standard

deviation and several quantiles (25%, 50%, 75%) of implied and realized roughness

measures for all stocks; we then take the time-series average of these summary statis-

tics and report them in the table.

As discussed in Section 3.2.2, we have values of implied roughness for only a subset

of stock-month pairs. We refer to this subset as the “implied universe.” In contrast,

by the “full universe” we mean the larger set of stock-month pairs for which we have

sufficient data to calculate a realized H and link TAQ, CRSP, and Compustat data.

See the appendix for details on the filters applied.

In the last column of Table 3.1 we report summary statistics for realized roughness

on the implied universe. The results in the table indicate that implied estimates of H

are a bit larger than realized estimates and that this may be partly due to differences

in the implied and realized universes, but the differences are small. [64] find that

values of realized H estimated from the time series of implied volatility are generally
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larger than values estimated from realized volatility, and they attribute the difference

to a smoothing effect over an option’s time to maturity. This effect may play some

role in our estimates of implied H.

Realized H on
Implied H Realized H Implied Universe

avg Mean 0.18 0.07 0.09
avg S.D. 0.21 0.10 0.10

avg 25th pctile 0.06 0.00 0.02
avg median 0.18 0.06 0.08

avg 75th pctile 0.30 0.14 0.15

Table 3.1: Monthly averages of cross-sectional summary statistics. The last column
shows statistics for realized H estimated from the subset of stocks for which implied
estimates are available.

Table 3.2 reports time-series averages of cross-sectional means and standard de-

viations by industry, using industry classifications from Ken French’s website.3 The

estimates are very consistent across different sectors.

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

Implied H Realized H Realized H on Imp. Univ.
Industry Avg Mean Avg S.D. Avg Mean Avg S.D. Avg Mean Avg S.D.

Consumer NonDurables 0.18 0.23 0.07 0.10 0.08 0.10
Consumer Durables 0.17 0.19 0.07 0.10 0.09 0.09

Manufacturing 0.17 0.19 0.08 0.10 0.09 0.10
Energy 0.20 0.20 0.08 0.10 0.09 0.09

Chemicals 0.19 0.19 0.08 0.10 0.09 0.09
Business Equipment 0.18 0.21 0.08 0.10 0.09 0.10

Telecom 0.19 0.22 0.08 0.10 0.09 0.10
Utilities 0.17 0.22 0.08 0.10 0.10 0.09
Shops 0.18 0.20 0.07 0.10 0.08 0.10
Health 0.17 0.23 0.07 0.10 0.09 0.10

Finance 0.18 0.19 0.07 0.10 0.10 0.10
Other 0.17 0.21 0.07 0.10 0.09 0.10

Table 3.2: Monthly averages of cross-sectional summary statistics by industry. The
last two columns show statistics for realized H estimated from the subset of stocks
for which implied estimates are available.
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3.3 Sorted Portfolios

In this section, we test the performance of trading strategies that pick stocks based

on realized or implied roughness. Each month, we sort stocks based on roughness

(realized or implied) and group them into quintile portfolios. We evaluate the per-

formance of a strategy that buys the roughest (smallest H) quintile and shorts the

smoothest (largest H) quintile, holding these positions for one month. We calcu-

late value-weighted returns in the month following the month in which portfolios are

formed, and then repeat the procedure for the next month.

In addition to calculating average returns, we calculate excess returns (alphas)

relative to various factor models: a single-factor (CAPM) model using the overall

return of the market, net of the risk-free rate; the three-factor [40] model (with

factors for the market, size, and book-to-market) augmented with a momentum factor,

as in [25]; the five-factor model of [41] (with factors for the market, size, book-to-

market, earnings robustness, and investment conservativeness), again augmented with

momentum.

We use stock prices from CRSP, factor returns from Ken French’s website, and

option implied volatilities from OptionMetrics. The OptionMetrics data starts in

1996, but we start from 2000 because much more data is available after 2000 than in

the earler years.

Table 3.3 shows results for stocks sorted on implied roughness. The columns show

results for the quintile portfolios, sorted from smoothest (highest H) to roughest

(lowest H). The last column shows results for the long-short strategy. The strategy

earns an average monthly return of 0.49% (5.9% annually). Its alphas with respect

to the various factor models range from 0.47% to 0.52% monthly, or 5.6% to 6.2%

annually. The numbers in brackets are [72] t-statistics, and show that these excess

returns are all statistically significant. Statistical significance at the 10%, 5% and 1%

levels is indicated by *, **, and ***, respectively.
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1 Smooth 2 3 4 5 Rough 5-1

Mean 0.22 0.39 0.37 0.33 0.71 0.49
Std. Dev. 4.82 4.76 4.69 5.08 5.26 2.63

CAPM Alpha -0.28** -0.11 -0.13 -0.19 0.19 0.47**
[-2.51] [-1.48] [-1.39] [-1.35] [1.37] [2.43]

FF-3-MOM Alpha -0.33*** -0.07 -0.07 -0.07 0.16 0.49***
[-2.88] [-0.94] [-0.94] [-0.64] [1.22] [2.63]

FF-5-MOM Alpha -0.29*** -0.04 -0.04 0.03 0.24* 0.52***
[-2.74] [-0.58] [-0.47] [0.30] [1.70] [2.76]

Implied H 0.46 0.27 0.18 0.09 -0.11
Size in billion $ 14.64 18.87 19.07 15.79 7.84
Book-to-Market 0.48 0.44 0.42 0.41 0.43

Number of stocks 153 152 153 152 152
Portfolio persistence 61% 75% 76% 74% 63%

Table 3.3: Performance of portfolios sorted on implied roughness. Alphas are monthly
values in percent. Numbers in brackets are t-statistics.

The lower half of Table 3.3 shows features of the quintile portfolios. By construc-

tion, the average implied H values decrease from left to right. The smoothest quintile

has H close to the Brownian value of 1/2, and the roughest quintile has a negative

average H. A negative H is not meaningful as a Hurst parameter, but can certainly

arise as an implied parameter through (3.10).

We see from Table 3.3 that the average book-to-market ratio is quite consistent

across the quintiles, but size (measured by market cap) seems to be positively corre-

lated with H, a point we will investigate further. The last row shows the percentage

of stocks in each quintile that remain in the quintile from one month to the next.

Table 3.4 reports corresponding results using realized roughness. Panel A uses

the full universe of CRSP stocks; Panel B limits the set of stocks used each month

to the “implied universe,” meaning those that pass the filters we use for the implied

roughness portfolios in Table 3.4.

Both panels of Table 3.4 show that stocks with rougher volatility (smaller realized

H) tend to outperform stocks with smoother volatility (larger realizedH). Comparing
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1 Smooth 2 3 4 5 Rough 5-1

PANEL A Mean 0.22 0.52 0.59 0.71 0.60 0.38
Std. Dev. 4.99 4.69 4.65 4.33 4.94 2.66

CAPM Alpha -0.30*** 0.02 0.09 0.24** 0.10 0.40**
[-3.08] [0.18] [1.20] [2.45] [0.71] [2.03]

FF-3-MOM Alpha -0.27*** 0.00 0.05 0.24*** 0.03 0.31
[-2.97] [0.00] [0.61] [2.71] [0.22] [1.56]

FF-5-MOM Alpha -0.19** 0.01 0.02 0.13 -0.01 0.17
[-2.13] [0.09] [0.23] [1.52] [-0.10] [0.97]

Realized H 0.23 0.12 0.06 0.01 -0.05
Size in billion $ 6.67 5.18 4.62 4.03 3.36
Book-to-Market 0.69 0.67 0.64 0.65 0.70

Number of stocks 611 613 614 614 614
Portfolio persistence 79% 80% 80% 80% 80%

PANEL B Mean 0.11 0.27 0.51 0.58 0.59 0.47
Std. Dev. 5.28 4.89 4.85 4.58 4.89 2.89

CAPM Alpha -0.42*** -0.24** 0.00 0.10 0.09 0.51**
[-3.55] [-2.16] [0.01] [0.94] [0.71] [2.51]

FF-3-MOM Alpha -0.38*** -0.19* 0.01 0.15 0.13 0.51***
[-3.49] [-1.75] [0.06] [1.50] [1.00] [2.73]

FF-5-MOM Alpha -0.25** -0.13 0.00 0.17 0.08 0.33*
[-2.31] [-1.19] [-0.02] [1.59] [0.60] [1.73]

Realized H 0.24 0.14 0.08 0.03 -0.04
Size in billion $ 18.38 16.37 15.31 13.69 12.18
Book-to-Market 0.44 0.43 0.43 0.43 0.44

Number of stocks 151 151 151 151 152
Portfolio persistence 80% 82% 82% 82% 81%

Table 3.4: Performance of portfolios sorted on realized roughness. Alphas are monthly
values in percent. Panel A shows results for all stocks and Panel B is limited to the
stocks used in Table 3.3 for comparison.

the last column of Table 3.4 (showing performance of the rough-minus-smooth long-

short strategy), with the last column of Table 3.3, indicates that the effect is not

quite as strong and not quite as statistically significant sorting on realized as sorting

on implied roughness. Portfolio persistence is a bit greater using realized roughness,

indicating that this strategy has somewhat lower turnover.

Comparing Panels A and B of Table 3.4, we find that sorting on realized roughness

yields higher alphas when we limit the universe of stocks to those for which we can
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Figure 3.3: Annual performance of rough-minus-smooth strategy based on implied
roughness.

also calculate implied roughness. This is surprising because the stocks in the more

limited universe are larger on average and have lower book-to-market ratios; smaller

stocks and high book-to-market stocks generally have higher expected returns. We see

a similar effect in Table 3.3, where controlling for the Fama-French factors improves

performance.

It is worth noting that in both panels of Table 3.4 the highest returns are gener-

ally associated with the fourth quintile of realized H rather than the fifth quintile.

The performance of the realized strategy could be substantially improved by buy-

ing the fourth quintile, rather than the fifth, and shorting the first. For consistency

and to avoid data snooping, we work exclusively with the original long-fifth, short-

first strategy; however, this may underestimate the efficacy of trading on realized

roughness.

Tables 3.3 and 3.4 show average performance over the full period 2000–2016. To

illustrate how performance varies over time, Figure 3.3 shows annual performance by

year for the implied strategy. Remarkably, sorting on implied roughness, the rough-

minus-smooth strategy is profitable in 13 out of the 17 years, including 2007–2009;

indeed, 2008 was the strategy’s best year. The strategy’s only large significant loss

is in 2001, and the loss that year is almost entirely attributable to September, the

month of the 9/11 attacks. We return to this point in Section 3.5.
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Figure 3.4: Annual performance of rough-minus-smooth strategy based on realized
roughness, using all stocks or just the implied universe.

Figure 3.4 shows annual performance of the strategy based on realized roughness.

The figure shows performance of the realized strategy on the full universe and on

the implied universe. Except in the early part of the sample, where the option data

is more limited, the realized strategy generally performs similarly on the full and

restricted sets of stocks. This confirms that the performance in Figure 3.3 is not

attributable to the set of stocks included in the implied universe. Indeed, comparing

Figures 3.3 and 3.4 shows that the realized and implied strategies have done well at

different times, suggesting that combining the two signals could lead to even better

performance. However from Table 3.4 we see that the realized strategy provides a

smaller FF-5-MOM alpha than the implied strategy. We will see in Section 3.4 that

the realized strategy is also less robust to controls for other factors.

The performance of the implied strategy in 2008 raises the question of whether

sorting on roughness implicitly tilts the long-short portfolio to favor some industries

over others. For example, a strategy that shorts bank stocks would have performed

well in 2008. However, we saw in Table 3.2 that roughness estimates are similar

across industries. Moreover, the average implied and realized H estimates for finance

companies in particular are in the middle of the ranges across industries, indicating

that a rough-minus-smooth strategy does not tend to favor or disfavor financial stocks.
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3.4 Controlling for Other Factors

To better understand the performance of the rough-minus-smooth strategies, in this

section we add controls for additional factors. We first discuss factors that might

influence performance and then evaluate their impact using two methods — double

sorts and [42] regressions.

3.4.1 Liquidity

We observed previously that in Table 3.3 the average market cap across the five quin-

tiles increases with H: rougher stocks tends to be smaller on average. This pattern

suggests the possibility that roughness may reflect lower liquidity and therefore that

a rough-minus-smooth strategy earns an illiquidity premium. This possibility is tem-

pered by the fact that the stocks that pass the filters for calculating implied roughness

are larger, on average, than those that do not. The question therefore requires a more

systemic investigation.

A connection between realized roughness and liquidity was noted in an early

version of [16], but it was removed from subsequent versions of that paper. [16]

compare estimates of realized roughness with daily volume of trading in a stock.

In addition to trading volume, we consider the widely-used [4] illiquidity measure.

The Amihud measure for a single stock in a single month sums the absolute values

of the daily returns and divides the sum by the dollar volume for the month. Larger

values of the Amihud measure are interpreted as indicating lower liquidity, whereas

larger values of trading volume are associated with greater liquidity.

Figures 3.5 and 3.6 compare, respectively, realized and implied estimates of H

with the log of the Amihud measure and log daily volume. Each dot in the figure

corresponds to a single stock in a single month. Consistent with the earlier version

of [16], we find a positive correlation (0.55) between realized H and log daily volume.
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Figure 3.5: Realized roughness and liquidity. The figures plot realized roughness
against the log of the Amihud illiquidity measure (top) and log daily volume (bottom).
Each point shows a single stock in a single month.

Consistent with this pattern, we find a negative correlation (−0.46) between realized

H and the log Amihud measure.

The results using implied roughness in Figure 3.6 are qualitatively similar but not

as strong. The correlation between implied H and log daily volume is 0.28, and the

correlation with the log Amihud measure is −0.40.
Beyond these empirical patterns, a potential link between roughness and liquidity

is interesting because of efforts to explain realized roughness through market mi-

crostructure; see [38] and [62]. However, the explanations developed to date are

highly stylized, and they do not make clear predictions about whether greater rough-

ness should be associated the more or less liquidity.4

4According to Mathieu Rosenbaum (personal communication), [62] implies a longer transient
price impact when H is smaller, which would be consistent with the correlations we find.
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Figure 3.6: Implied roughness and liquidity. The figures plot implied roughness
against the log of the Amihud illiquidity measure (top) and log daily volume (bottom).
Each point shows a single stock in a single month.

3.4.2 Implied Volatility and Skewness

Implied roughness is a relatively complex feature of a stock’s implied volatility surface,

involving differences in implied volatilities across both strikes and maturities. To try

to isolate the source of alpha in the implied rough-minus-smooth strategy, we will

therefore control for more basic features — the level of the ATM implied volatility

and the shape of implied volatility skew.

Several authors (particularly [34] and [91]) have documented predictability in

stock returns using measures of implied volatility and skewness. A fast decay in the

ATM skew (low implied H) is potentially associated with high degree of near-term

skewness or implied volatility. We therefore control for these factors.

As our measure of ATM implied volatility, we use the implied volatility for a

one-month call with strike closest to the spot price as reported in implied volatility

110



www.manaraa.com

surface data set from OptionMetrics. We denote this by σCall
1m (K

S
= 1). Similar to

[91], we use as our measure of implied volatility skew

XZZ-skew = σPut
1m (

K

S
= 0.9)− σCall

1m (
K

S
= 1), (3.11)

the difference between the one-month implied volatility for a put with moneyness

closest to 0.9 and the one-month implied volatility for a call with strike closest to the

spot price.

[91] find that larger values of their skew measure predict lower stock returns in

the cross section, a pattern that we find holds up as well using more recent data

and a slightly different skew measure. Interestingly, this effect appears to run in the

opposite direction of what we find using implied roughness. A smaller implied H

indicates a faster decay of the ATM skew. If this indicates a higher initial value of

the ATM skew, then the finding of [91] would suggest that stocks with smaller implied

H have lower stock returns, yet we find exactly the opposite. This suggests that the

performance of the rough-minus-smooth strategy is not explained by the XZZ-skew,

a hypothesis we will check in the next sections.

3.4.3 Double Sorts

To control for factors like liquidity or skewness that might influence the returns on

our roughness quintile portfolios, in this section, we apply a standard double-sorting

procedure.

Suppose, for example, that we want to control for illiquidity, using the Amihud

measure. For each month, we proceed as follows. We sort stocks into deciles according

to the Amihud measure. Within each of these illiquidity deciles, we sort stocks by

roughness (realized or implied). We then take the roughest quintile from each of

the illiquidity deciles — this is our rough portfolio. Similarly, we form our smooth
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portfolio by grouping all stocks that are in the smoothest quintile of any of the

illiquidity deciles.

Under this construction, all levels of illiquidity are represented in the rough and

smooth portfolios, so the performance of the rough-minus-smooth strategy should be

unaffected by illiquidity: we have hedged out illiquidity. We sort into ten portfolios

based on illiquidity in the first step in order to achieve a better balance of the con-

ditioning factor between our controlled rough portfolio and smooth portfolio. The

same procedure allows us to hedge out the effect of any other factor by first sorting

on that factor.

We apply double sorts that condition on the following variables, one at a time:

◦ Average daily volume for each stock;

◦ The Amihud illiquidity measure;

◦ Turnover, measured as a stock’s monthly trading volume divided by the average

shares outstanding of that stock during the month;

◦ ATM implied volatility, as measured by the implied volatility for a 30-day option

with strike closest to spot price;

◦ XZZ-skew, as defined in (3.11);

◦ Size (as measured by log market cap), book-to-market, and trailing 12-month

return.

Table 3.5 shows the performance of the rough-minus-smooth strategy based on

implied roughness after controlling for each of these factors through double sorts. The

table shows average returns and alphas using either FF3-Mom or FF5-Mom factor

models.

The first three rows of the table consider liquidity measures. Sorting first on

average daily volume or the Amihud illiquidity measure reduces but does not eliminate
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the profitability of the strategy. Some reduction in performance is to be expected,

given the correlation we documented in Section 3.4.1 between implied roughness and

these measures. But the profitability of the strategy remains significant, particularly

as measured by alpha relative to the Fama-French 5-factor with momentum, ranging

from 3.1% to 5.4% per year, depending on the measure used, with t-statistics ranging

from 2.0 to 3.0. Controlling for turnover actually increases the mean return of the

strategy, with average monthly returns of 0.54%, and increases the t-statistics to

around 4.0. In short, liquidity by itself cannot account for the performance of the

rough-minus-smooth strategy.

The next two rows of the table control for implied volatility and the ATM skew.

Controlling for ATM implied volatility improves the average return and alphas to 7%,

except for the FF5Mom alpha, which decreases a bit to 4.9% annually. Controlling

for the XZZ-skew measure of [91] has only a small effect on the average return, alphas

and t-statistics, and all alphas remain statistically significant. Thus, these well-known

features of the implied volatility surface — the level of ATM volatility and skewness in

implied volatility — cannot account for the performance of the rough-minus-smooth

strategy.

The last three factors in the table serve as robustness checks. Sorting on size, book-

to-market, and trailing returns may slightly reduce the performance of the strategy

but does not eliminate — and may even strengthen — statistical significance.

Table 3.6 shows corresponding results based on realized roughness, using the full

universe of stocks (Panel A) or the implied universe (Panel B). Here we find that con-

trolling for liquidity (through average daily volume or the Amihud measure) removes

the significance of returns and alphas of the rough-minus-smooth strategy. Control-

ling for size does as well in Panel A. These results suggest a strong association between

realized roughness and illiquidity. In contrast, controlling for implied volatility and

the ATM skew actually enhances the performance of the strategy. This further indi-
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Conditioning Variable Mean Return CAPM Alpha FF3Mom Alpha FF5Mom Alpha

Average Daily Volume 0.23* 0.21 0.23* 0.26**
[1.84] [1.60] [1.81] [2.01]

Average Daily Amihud 0.45*** 0.46*** 0.46*** 0.40***
[3.23] [3.31] [3.21] [2.65]

Turnover 0.54*** 0.53*** 0.52*** 0.45***
[3.96] [3.90] [3.53] [2.98]

XZZ Skew 0.46*** 0.44** 0.49*** 0.45***
[2.79] [2.54] [2.96] [2.61]

ATM Implied Volatility 0.59*** 0.59*** 0.59*** 0.41**
[3.54] [3.51] [3.32] [2.28]

Size 0.41*** 0.42*** 0.46*** 0.42***
[3.24] [3.31] [3.53] [3.16]

Book-to-Market 0.34** 0.32** 0.36** 0.35**
[2.44] [2.17] [2.57] [2.34]

12-Month Return 0.45*** 0.43*** 0.43*** 0.48***
[3.29] [3.06] [3.17] [3.38]

Table 3.5: Performance of rough-minus-smooth portfolios using implied roughness,
constructed through double sorts on various factors, for the period Jan 2000 through
Jun 2016. Mean return and alphas are monthly values in percent. Numbers in
brackets are t-statistics based on Newey-West standard errors.

cates that the effect of roughness, whether realized or implied, is not already reflected

in the ATM volatility or the ATM skew.

3.4.4 Fama-MacBeth Regressions

To further investigate whether the performance of the rough-minus-smooth strategy

is explained by other factors, we run regressions based on the specification

Reti,t = b0t + b1tHi,t + b′2tCONTROLSi,t−1 + ei,t, (3.12)

where Reti,t is the return of stock i in month t; Hi,t is either realized or implied

roughness of stock i in month t; CONTROLSi,t−1 is a vector of controls; and the

ei,t are error terms. We estimate coefficients and their standard errors through [42]

regressions: in each month t, we run cross-sectional regressions to estimate b0t, b1t,

and b2t; we then take the time-series averages of these regression coefficients and use

their time-series variation to estimate standard errors. Compared to the double sorts

tested previously, these regressions have the advantage of allowing the simultaneous
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Conditioning Variable Mean Return CAPM Alpha FF3Mom Alpha FF5Mom Alpha

PANEL A: Full Universe
Average Daily Volume 0.14 0.15 0.14 0.05

[1.47] [1.63] [1.51] [0.60]
Average Daily Amihud 0.12 0.17 0.12 -0.05

[0.94] [1.37] [1.03] [-0.45]
Turnover 0.38*** 0.38** 0.33** 0.20

[2.60] [2.49] [2.34] [1.46]
XZZ Skew 0.54*** 0.57*** 0.53*** 0.30*

[3.10] [3.22] [3.36] [1.95]
ATM Implied Volatility 0.54*** 0.56*** 0.59*** 0.41**

[2.81] [2.92] [3.17] [2.15]
Size 0.12 0.18 0.13 -0.04

[0.90] [1.47] [1.27] [-0.37]
Book-to-Market 0.35*** 0.38*** 0.35*** 0.20

[2.63] [2.90] [2.73] [1.55]
12-Month Return 0.51*** 0.54*** 0.50*** 0.37**

[3.06] [3.12] [3.19] [2.34]

PANEL B: Implied Universe
Average Daily Volume 0.22 0.25 0.21 0.08

[1.43] [1.64] [1.48] [0.56]
Average Daily Amihud 0.40* 0.47** 0.41** 0.22

[1.94] [2.31] [2.40] [1.35]
Turnover 0.60*** 0.61*** 0.63*** 0.53***

[3.13] [3.09] [3.38] [2.79]
XZZ Skew 0.49** 0.53** 0.51*** 0.27

[2.41] [2.51] [2.88] [1.54]
ATM Implied Volatility 0.62*** 0.63*** 0.62*** 0.43*

[2.81] [2.77] [2.88] [1.95]
Size 0.49** 0.55*** 0.53*** 0.35**

[2.41] [2.70] [3.13] [2.10]
Book-to-Market 0.31* 0.34** 0.33** 0.14

[1.83] [2.05] [2.05] [0.88]
12-Month Return 0.55*** 0.60*** 0.57*** 0.41**

[2.96] [3.08] [3.47] [2.47]

Table 3.6: Performance of rough-minus-smooth portfolios using realized roughness,
constructed through double sorts on various factors, for the period Jan 2000 through
Jun 2016. Mean return and alphas are monthly values in percent. Numbers in
brackets are t-statistics based on Newey-West standard errors.
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inclusion of multiple controls, but they have the disadvantage of imposing linearity

on the relationship between returns and controls.

An alternative approach would be to run a panel regression to estimate (3.12)

with no dependence on t in the coefficients. Since we are mainly interested in the

cross-sectional relationship between roughness and returns, we would include month

fixed-effects; and since monthly returns have very low autocorrelation, we would es-

timate standard errors clustered by month, following [75]. However, as also discussed

in [75], Section 3, Fama-MacBeth standard errors are more accurate than panel re-

gressions with clustered standard errors under two conditions that are appropriate to

our setting: (1) the main source of dependence in error terms comes from time effects

(correlations in returns of different stocks in the same month); and (2) the number of

time periods (201 months) is not very large compared with the number of stocks per

month (up to 1108 stocks per month in the implied universe and 3577 per month for

the full universe). The dependence in (1) is dealt with effectively by Fama-MacBeth

regressions. The values in (2) would require the estimation of a very large covariance

matrix between different stocks based on limited data in order to cluster by time. In

light of these considerations, we use Fama-MacBeth regressions.

Table 3.7 shows the results. Panel A tests implied H; Panel B test realized H on

the implied universe; and Panel C tests the realized H on the full universe of stocks.

Each panel shows two regressions, one including only the corresponding roughness

measure, and one including multiple controls. All explanatory variables have been

standardized (cross-sectionally in each month) to make the coefficients comparable.

Returns are in decimals, so a return of 5% is recorded as 0.05.

Panel A confirms the negative relationship between returns and implied H; in-

cluding controls increases the magnitude and significance of the coefficient. Panel B

shows that realized H has a significant relationship with returns when restricted to

the implied universe, but this relationship is eliminated by the controls. In Panel C we
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find no significant relationship between realized H and returns on the full universe of

stocks, with or without controls. Interestingly, our results confirm a strong negative

relationship between returns and the skewness measure of [91], while also showing in

Panel A that this control does not explain the effectiveness of implied roughness.

Our controls include return volatility and implied volatility, so the regressions

in Table 3.7 also control for the volatility risk premium ([27]) measured as the dif-

ference between implied and realized volatility. In particular, Panel A shows that

the profitability of the implied strategy cannot be attributed to the volatility risk

premium.
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PANEL A PANEL B PANEL C

Variable Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6

Intercept 0.0043 0.0046 0.0043 0.0046 0.0088* 0.0078
[0.83] [0.91] [0.83] [0.90] [1.66] [1.49]

Implied H -0.0010** -0.0014***
[-2.04] [-3.43]

Realized H -0.0015** -0.0003 -0.0003 -0.0002
[-2.10] [-0.68] [-0.51] [-0.56]

XZZ Skew -0.0034*** -0.0034*** -0.0036***
[-5.30] [-5.20] [-6.56]

ATM volatilities -0.0063*** -0.0062** -0.0047**
[-2.62] [-2.56] [-2.25]

Log Option Volume -0.0033* -0.0034* -0.0015
[-1.85] [-1.91] [-1.44]

Log Option Open Interest 0.0025 0.0024 -0.0012
[1.58] [1.53] [-1.22]

Log Stock $ Volume 0.0044 0.0046 0.0006
[1.38] [1.45] [0.25]

Log Stock Volume 0.0019 0.0018 0.0061***
[1.06] [1.03] [3.58]

Turnover -0.0019 -0.0020 -0.0027**
[-1.47] [-1.54] [-2.51]

Book-to-Market -0.0003 -0.0002 -0.0010
[-0.29] [-0.21] [-0.36]

Log Size -0.0095*** -0.0094*** -0.0079***
[-2.89] [-2.84] [-3.01]

Past 6M Return -0.0006 -0.0007 -0.0007
[-0.49] [-0.56] [-0.59]

Past 12M Return 0.0010 0.0011 0.0010
[0.93] [0.98] [1.01]

Past Return Volatility -0.0024* -0.0024 -0.0043***
[-1.65] [-1.63] [-2.76]

Past Return Skew -0.0005 -0.0004 -0.0002
[-0.95] [-0.88] [-0.60]

Adj. R2 0.29% 13.15% 0.46% 13.18% 0.14% 9.21%

Table 3.7: Fama-MacBeth regression results. Panel A, B, C each have two regression
results, one with only one regressor (either implied or realized H) and the other
including a complete set of controls. Panel A shows results for implied H. Panel B
presents results for realized H on the implied universe. Panel C uses realized H and
the unrestricted universe. Numbers in brackets are t-statistics based on Newey-West
standard errors.
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3.5 Event Risk: Earnings Announcements and

FOMC Meetings

In this section, we argue that cross-sectional differences in implied roughness of indi-

vidual stocks reflect differences in near-term downside risk; we interpret the profitabil-

ity of the rough-minus-smooth strategy as compensation for bearing this risk. We

support this interpretation by considering the performance of the strategy around

two types of events: company-specific earnings announcements, and interest rate

announcements by the Federal Reserve’s Open Markets Committee (FOMC). We

present three pieces of evidence to support our argument. The strategy’s profitability

is greatest when restricted to stocks with earnings announcements in the subsequent

month, when the potential for near-term idiosyncratic risk is high; roughness does not

forecast earnings, suggesting that the strategy’s profitability reflects compensation for

risk rather superior selection of profitable companies; the strategy is not profitable

in the lead-up to FOMC announcements — a period of elevated aggregate near-term

risk rather than idiosyncratic near-term risk.

3.5.1 Earnings Announcements

3.5.1.1 Testing for Earnings Surprise Predictability

We begin by testing whether roughness predicts earnings surprises, as a possible

explanation for the profitability of our strategy. Positive earnings surprises tend to

be followed by stock price appreciation, so a signal that forecasts earnings surprises

can serve as the basis for a profitable trading strategy. We will see, however, that

this does not explain the profitability of the roughness signal.

We focus on the subset of data defined by

Iea = {(i, t): stock i has an earnings announcement in month t},
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using earnings announcement data from IBES. Letting I denote the full universe of

stock-month pairs for which we have an implied roughness measure, I \ Iea denotes

the subset that do not have an earnings announcement.

To measure earnings surprises, we use the standardized unexpected earnings

(SUE) score from IBES. SUE measures the difference between a company’s actual

earnings and the mean forecast by analysts, normalized by the standard deviation

of analyst forecasts in the previous quarter. To test for a relation between SUE and

roughness, we use the Fama-MacBeth regression approach, meaning that we first run

the following regression for every month t,

SUEi,t = b0t + b1tHi,t−1 + ei,t, (i, t) ∈ Iea,

where Hi,t−1 denotes the implied roughness calculated for stock i in month t − 1.

We then average the b1t over all months t and calculate standard errors adjusted for

autocorrelation.

For comparison, we run the same analysis replacing implied roughness with the

ATM skew in (3.11). Using data through 2005, [91] show that a greater ATM skew

forecasts negative earnings surprises. In other words, before companies report dis-

appointing earnings, low-strike puts become more expensive. [91] interpret this as

evidence that investors with inside information trade on that information through

options and that the stock market is slow to incorporate the information in option

prices.

The left panel of Table 3.8 reports estimated coefficients and t-statistics for the

two regressions. The bottom row confirms the finding of [91], with the benefit of

more than ten years of additional data. The coefficient on the ATM skew is large,

negative, and statistically significant. In contrast, the coefficient on implied roughness

is indistinguishable from zero. Implied roughness does not forecast earnings surprises,

and the implied roughness signal is distinct from the information in the ATM skew.
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FM Regression Portfolio Sorting

Variable Coef Difference in SUE

Implied H 0.035 -0.087
[0.155] [-0.324]

ATM skew -2.744*** -0.300***
[-2.827] [-3.277]

Table 3.8: Predicting earning surprises using roughness by Fama-MacBeth regressions
and portfolio sorting. Left panel shows coefficients and t-statistics in Fama-MacBeth
regressions of standardized unexpected earnings (SUE) on implied roughness and
ATM skew. Right panel shows the difference in average SUE in the top and bottom
quintiles of stocks sorted by implied roughness or ATM skew. Numbers in brackets
are t-statistics based on Newey-West standard errors.

The right panel of Table 3.8 further supports these conclusions. In this analysis,

in each month t we limit ourselves to stocks with earnings announcements in month

t + 1. We sort these stocks into quintile portfolios based on roughness in month t.

The table shows the difference in average SUE (in month t+ 1) between the highest

and lowest roughness quintiles. The table shows the same comparison for stocks

sorted on ATM skew in month t. We again see that a higher ATM skew forecasts

negative earnings surprises whereas there is no relation between roughness and SUE.

The profitability of the rough-minus-smooth strategy is not grounded in forecasting

earnings.

3.5.1.2 Strategy Performance Near Earnings Announcements

Next we compare the performance of the rough-minus-smooth strategy when re-

stricted to subsets of stocks based on the timing of earnings announcements. Specif-

ically, we evaluate performance in three cases:

• Iea: sort stocks with announcements in month t based on roughness in month

t− 1;

• I \ Iea: sort stocks without announcements in month t based on roughness in
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month t− 1;

• Iea,100: same as Iea but only if at least 100 stocks in I have announcements in

month t.

In all cases, portfolios are formed in month t − 1 and returns are evaluated in

month t.

Performance results under these restrictions are shown in the top panel of Table

3.9. Compared with the right-most column of Table 3.3, restricting attention to

earnings-announcement stocks Iea improves monthly alphas by roughly 40%, from

around 0.50 to around 0.70. The estimated alphas are now only marginally significant,

but this may be because the sample size (the number of stocks available each month)

is now smaller. The results for Iea,100 support this hypothesis: in months with at

least 100 stocks available, the estimated monthly alpha goes above 1.0 (an annual

alpha of more than 12%) and is highly significant. (These results are not sensitive to

the choice of 100 as threshold.) In contrast, when we exclude stocks with earnings

announcements, the I \ Iea alphas are smaller than the alphas in Table 3.3 and not

statistically significant.

Taken together, the results in the top panel of the table show that sorting on

roughness is most effective when applied to stocks facing a near-term idiosyncratic

risk in the form of an earnings surprise. We interpret this to mean that greater

roughness signals greater near-term downside risk, and that this risk is compensated

with a price discount and a subsequent higher average return.

The analysis in the top panel is necessarily restricted to the universe I of stock-

month pairs for which implied roughness is available. As a benchmark, the second

panel shows market returns and alphas for the restricted sets of stocks used in the

top panel. The second panel treats each restricted set as a long-only portfolio. The

bottom row shows that stocks without earnings announcements earn lower returns;
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Mean CAPM FF3Mom FF5Mom
Return Alpha Alpha Alpha

Rough Minus Smooth
(implied roughness universe)

Earnings Announcement Stocks 0.71* 0.71* 0.70* 0.74*
(Iea) [1.71] [1.68] [1.73] [1.72]

EA Stocks – Threshold 100 1.00*** 1.03*** 1.07*** 1.11***
(Iea,100) [2.60] [2.67] [2.91] [2.95]

No Earnings Announcement 0.30 0.28 0.29 0.29
(I \ Iea) [1.41] [1.23] [1.25] [1.22]

Long Only
(implied roughness universe)

Earnings Announcement Stocks 0.63* 0.12 0.14 0.20
(Iea) [1.70] [0.88] [1.08] [1.49]

EA Stocks – Threshold 100 0.47 -0.03 -0.01 0.09
(Iea,100) [1.13] [-0.28] [-0.06] [0.76]

No Earnings Announcement 0.29 -0.22*** -0.17*** -0.15**
(I \ Iea) [0.81] [-3.23] [-2.69] [-2.53]

Long Only
(full universe)

Earnings Announcement Stocks 0.77** 0.24** 0.21** 0.20**
(F ea) [2.23] [2.33] [2.20] [2.12]

No Earnings Announcement 0.38 -0.16*** -0.17*** -0.18***
(F \ F ea) [1.12] [-2.91] [-2.79] [-3.07]

Table 3.9: Strategy performance around earnings announcements. Top panel: Implied
roughness strategy performance on stocks with earnings announcements in the next
month (Iea), in months with at least 100 candidate stocks (Iea,100), and on stocks
without earnings announcements I \ Iea. Middle panel: Long-only performance on
the same sets of stocks. Bottom panel: Long-only comparison of stocks with and
without earnings announcements in the full universe of stock-month pairs. Numbers
in brackets are t-statistics based on Newey-West standard errors.
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but the main implication of the second panel is that the results in the top panel

cannot be attributed to the restrictions in the definitions of Iea, Iea,100, and I \ Iea.
Moreover, the average implied H values in these three sets are nearly identical and

all in 0.17–0.18.

This point is reinforced by the bottom panel. Here we drop the restriction to

I and compare performance on the full universe of stocks with earnings announce-

ments F ea and without F \ F ea. Stocks with earnings announcements earn higher

returns than stocks without. Put differently, investors are compensated for bearing

earnings announcement risk. Sorting on roughness identifies the stocks where this

risk compensation is greatest.

These observations invite speculation on the implied strategy’s losses in September

2001, which we mentioned in our discussion of Figure 3.3. Based on quintiles formed

in August, the strategy would be long stocks facing near-term downside uncertainty.

These stocks may have proved to be the most vulnerable to the disruptions and shock

of the 9/11 attacks, leading the strategy to incur large losses.

3.5.2 Strategy Performance Near FOMC Announcements

We now turn from considering individual corporate events to FOMC announcements,

which are among the most important scheduled events for the aggregate market.

Indeed, [65] find that the excess return of the stock market is mainly earned during

the 24-hour window before the earnings announcement; in other periods the average

excess return is not statistically different from zero. If, as we have suggested, implied

roughness ranks stocks on near-term idiosyncratic risk, then our strategy should not

be expected to enhance returns in the lead-up to FOMC announcements.

Following [65], we consider announcements for the eight scheduled FOMC meet-

ings each year. (Public announcements began in 1994, and our sample starts in 2000.)

We define the pre-announcement period as the interval from the close of trading on
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day d− 2 to the close on day d, where d denotes the FOMC announcement date. We

compare the performance of our strategy when it is restricted to invest in (or outside

of) the pre-announcement period.

Our strategy is based on monthly data, so these timing restrictions require some

explanation. When we limit ourselves to investing in pre-announcement periods, we

evaluate performance only in the eight months of the year with scheduled announce-

ments. In each such month, we take the return for the month to be the return over

the two days that make up the pre-announcement period. We can apply this restric-

tion to stock-month pairs in the implied roughness universe, in which case we label it

IpreFOMC , and we can apply the restriction to the full universe of stock-month pairs

and label it F preFOMC .

We label the opposite restrictions InonFOMC and F nonFOMC . For the four months

of each year without an FOMC announcement, the “nonFOMC” return is the just

the ordinary monthly return. For the other eight months, the “nonFOMC” return is

the return for the month excluding the two-day pre-announcement window.

The results are shown in Table 3.10, which has the same format as Table 3.9.

The top panel compares the rough-minus-smooth strategy with the “preFOMC” and

“nonFOMC” restrictions; the second panel shows long-only results with the same

restrictions and limited to the universe of stock-month pairs for which we have implied

roughness; the bottom panel shows long-only results when the restrictions are applied

to the full universe of stock-month pairs.

The bottom panel is closest to the work of [65] and consistent with their conclu-

sions: stocks earn higher returns during the pre-announcement period than at other

times. The pattern is nearly identical in the middle panel, indicating that the I uni-

verse is representative of the full universe in its response to FOMC announcements.

In the top panel, the results flip. Sorting on implied roughness is not profitable

during the pre-announcement period, when all stocks are facing a high degree of near-
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Mean Return CAPM Alpha FF3Mom Alpha FF5Mom Alpha

Rough Minus Smooth
(implied roughness universe)

pre FOMC ann 0.09 0.11* 0.08 0.11*

(IpreFOMC) [1.53] [1.72] [1.40] [1.78]
non pre-FOMC ann 0.43** 0.40** 0.42** 0.43**

(InonFOMC) [2.42] [2.16] [2.36] [2.38]

Long Only
(implied roughness universe)

pre FOMC ann 0.41*** 0.27* 0.33** 0.32**

(IpreFOMC) [3.20] [1.92] [2.24] [2.12]
non pre-FOMC ann 0.12 -0.36*** -0.35*** -0.30***

(InonFOMC) [0.34] [-3.58] [-3.25] [-2.70]

Long Only
(full universe)

pre FOMC ann 0.41*** 0.26 0.37* 0.36*

(F preFOMC) [2.59] [1.38] [1.81] [1.76]
non pre-FOMC ann 0.26 -0.25** -0.29*** -0.29***

(F preFOMC) [0.78] [-2.49] [-2.80] [-2.66]

Table 3.10: Strategy performance around FOMC announcements. Top panel: Im-
plied roughness strategy performance in the pre-announcement period (IpreFOMC)
and outside the pre-announcement period (InonFOMC). Middle panel: Long-only per-
formance of the implied universe I during the same time periods. Bottom panel:
Long-only performance of the full universe during the same time periods.

term systematic risk. The rough-minus-smooth strategy earns its returns the rest of

the year, away from the pre-announcement period.

Recall that implied roughness measures the rate of decay of the ATM skew. A

larger ATM skew indicates greater concern for downside risk, so a projected rapid

decay in the ATM skew suggests concerns for downside risk that will be resolved

quickly. Taking the results of this section together with those of Section 3.5.1.2, we see

that proximity to a company-specific event enhances the performance of our strategy

whereas proximity to an aggregate event has the opposite effect. This pattern suggests

that the near-term downside risk captured by implied roughness is idiosyncratic.

Moreover, the profitability of the rough-minus-smooth strategy suggests that investors

are compensated for bearing this particular type of risk.

Our investigation does not explain why this near-term idiosyncratic risk should

earn a risk premium. But the puzzle is not specific to our setting. Leaving aside

roughness, the bottom panel of Table 3.9 records a well-known phenomenon of stocks
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earning higher returns around earnings announcements. Sorting on implied roughness

pushes this effect further.

3.6 Conclusions

We have investigated strategies for trading stocks based on measures of roughness

in their volatility. We have compared long-short strategies based on realized rough-

ness (calculated from high-frequency stock returns) and implied roughness (calculated

from option prices). Both measures support a strategy of buying stocks with rougher

volatilities and selling stocks with smoother volatilities; but sorting on implied rough-

ness yields higher returns and is more robust to controlling for other factors. In

particular, it is robust to controlling for illiquidity and the level of the ATM skew.

We have argued that implied roughness provides a measure of near-term idiosyn-

cratic risk: a stock with greater implied roughness is one that the market perceives to

have downside uncertainty that will be resolved quickly. On this interpretation, the

profitability of our rough-minus-smooth strategy reflects compensation for bearing

this risk. The performance of our strategy is enhanced near earnings announcements,

when stocks face elevated idiosyncratic risk, and it is suppressed near FOMC an-

nouncements, when the dominant near-term risk is systematic.

Our work raises interesting questions for the rough volatility framework. Part

of the appeal of this framework is that it simultaneously explains key features of

realized volatility and the implied volatility surface extracted from option prices.

Yet we find important differences in working with realized and implied measures

of roughness. Estimating either measure of roughness from limited data presents

significant difficulties, so it is unclear if the differences we observe present a challenge

to the theoretical framework or simply call for better estimation methods.
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Chapter 4

Heterogeneous Treatment Effects in Asset Pricing

4.1 Introduction

Flexible estimation of heterogeneous treatment effects (HTE) are key to many appli-

cation areas, such as personalized medicine and optimal resource allocation, and have

received lot of attentions in research areas of causal inference and machine learning.

Various work has proposed causal variants of powerful machine learning methods that

are tailored to HTE estimation. Some recent work includes methods based on random

forests [87], boosting [76], and neural networks [80]. Also, [73] proposes an algorithm

called R-learner that is more flexible than formal proposals in the sense that empirical

researchers can choose any machine learning algorithms or black-box predictors in the

estimation of HTE, and the resulting estimator still enjoys certain good properties

under additional assumptions. The intended application domain for those estimation

methods is usually in health care. We apply the technique to financial asset pricing.

Since the seminal work by [40], numerous papers have found new factors that

can explain cross-sectional stock returns ([32] and [57]). Throughout this chapter, by

factor models or factors, we mean the firm-level characteristics associated with the

factor as potential predictors for future stock returns in the cross section By factor

investment strategy, we mean the usual long-short strategies formed by single variable

sorting based on the firm-level characteristic considered, as in [40], [41] and this large

literature on empirical asset pricing. For example, by HML (high-minus-low), we

mean the trading strategy where we periodically sort all stocks in a certain universe
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based on book-to-market ratio, and buy the stocks with the highest book-to-market

ratio and short the ones with the lowest.

In addition to finding new factors that contribute to explaining cross-sectional

returns, understanding a factor’s limitation and scope is also important: for what

kind of stocks this factor works particularly well and for what kind of stocks it does

not work at all in terms of investment returns of long-short strategies formed by the

characteristic. Take the well-known value factor as an example: practitioners often

refer to cases in which buying cheap stocks according certain valuation metric does

not generate excess returns in future as a “value trap”1. Identifying value traps and

characterizing those stocks a priori would be of great interests so that people could

avoid them when performing value investing, considering the popularity of the value

factor in the industry. Understanding what kind of stocks responds the strongest to

higher book-to-market ratio is also important since it might shed some light on what

drives the profitability of the value factor or book-to-market ratio. Similarly people

use “momentum trap”2 to refer to stocks or situations where past winners suffer in

the coming periods.

Inspired by the terms “value traps” and “momentum traps”, we use the term

“characteristic traps” to refer a subset of stocks for which a naive factor investment

strategy based on some firm characteristic does not tend to yield good returns in

the future. On the positive side, we use the phrase “characteristic responders” to

denote a subset of stocks with the following property: the factor investing strategy

based on the focal characteristic performs the best when restricted to the particular

subset, compared with cases where we apply the same trading strategy to the entire

universe. It is very intuitive that future returns of different stocks at different times

1For example, see https://www.bloomberg.com/opinion/articles/2017-11-30/the-12-signs-a-
cheap-stock-is-a-value-trap.

2https://www.bloomberg.com/news/articles/2018-03-26/morgan-stanley-warns-of-momentum-
trap-for-rebounding-tech-stocks
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might respond to certain firm characteristic differently. In this study we interpret

the focal characteristic as the “treatment”, and the goal of this chapter is to utilize

HTE estimation techniques to identify and characterize characteristic responders and

traps in a systematic and data-driven fashion.

The connections between HTE and factor models are as follows. We consider one

focal factor/characteristic at a time. Use again value factor as an example. We view

the book-to-market ratio as the continuous treatment variable Z and treat the next

month’s stock return as outcome variable Y . The treatment effect τ we want to study

is thus the effect of book-to-market ratio on future stock returns. The treatment effect

is heterogeneous in the sense that for different stocks with different characteristics,

book-to-market ratios might affect future returns differently. This heterogeneity is

denoted by τ(xjt) as a function of controls or features denoted by xjt for stock j

and month t. We collected around 40 firm characteristics other than the treatment

characteristic and use them as controls xjt. Based on findings from [40], we expect

that value factor has positive average returns and that stocks with higher book-to-

market ratio have higher future returns. Then “characteristic responders” for value,

or “value traps”, should be the stocks with the largest τ(xjt) (most positive). On the

other hand, “value traps” would be the stocks with smallest τ(xjt) and their τ(xjt)

could be close to 0 or even negative.

Our paper focuses only on the most standard factors–size, value, and momentum–

as treatment characteristics for two reasons. First, these standard factors are probably

the most well-known and are also widely used in practice, leading to a greater interest

in understanding how the factor investment strategies work and where they work

best/worst. Second, the fact that our approach works well for the most basic factors

instead of having to cherry-picking factors from the literature is reassuring. Of course

our procedure can be applied to any other factors/characteristics of interests.

To illustrate the difference between our HTE approach and the traditional ho-
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Figure 4.1: Homogeneous treatment effect estimation when the true effect is hetero-
geneous

mogeneous approaches in asset pricing, we conduct a simple simulation in Figures

4.1 and 4.2. In the simulation, we randomly generate 100 points from uniform dis-

tribution as x-axis variables Z. We set Y = 0 ∗ Z + N (0, 0.8) for 50 points and

Y = 2 ∗ Z +N (0, 0.8) for the rest. Suppose that Z is some firm level characteristic

whose effect on return is of interests and Y is future stock returns. Figure 4.1 rep-

resents the traditional approach: we treat all stocks the same way and run a linear

regression to estimate the slope. Figure 4.2 corresponds to our new proposal, where

we still keep the linear assumption but the effect of Z on Y can be different for the

two groups of stocks. In the simulation, we know the data generating process, but

in reality, we need to differentiate the two groups in a data-driven fashion. We also

simplify τ(xjt) in the simulation to have only two levels of different treatment effect,

0 and 2, corresponding to our characteristic trap and characteristic responder set

respectively. The line in Figure 4.1 is an OLS regression line while the two lines in

Figure 4.2 is OLS applied to each group. We also mark the value of the slopes on the

plots.
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Figure 4.2: Heterogeneous treatment effect estimation when the two groups with
different treatment effects are known

For HTE estimation, we focus on the R-learner proposed by [73] for its flexibility

and nice theoretical properties. The resulting estimates τ̂(xjt) can be used to identify

characteristic traps and opportunities. For our test period 2006-2018, at the end

of month t − 1, we set the quintile with the highest τ̂(xjt) to be the characteristic-

responder subset and the 20% of stocks with the lowest τ̂(xjt) to be the characteristic-

trap subset. We form two long-short portfolios restricted to both subsets of stocks and

hold the two long-short portfolios for month t. We repeat the same steps at the end of

month t. For the value factor, the long-short strategy restricted to the characteristic-

responder subset has an average monthly return of 0.71%, whereas the same HML

strategy applied to the characteristic-trap set has an average monthly return −0.06%.

As a benchmark, standard HML strategy applied to the entire universe of stocks has

a monthly average return of 0.25% for the same time period. All long-short portfolios

are equal weighted. We’ve found similar results for size and momentum as treatment

variables. The difference in HML average returns of the characteristic responders and

traps is statistically significant.
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These results have the following implications. First, the treatment effects for size,

value, and momentum are indeed heterogeneous and our procedure successfully iden-

tified the characteristic responders and characteristic traps. Similar to the applica-

tions in personalized medicine, if we successfully identify a sub-population with good

treatment effects, we could only prescribe drugs to that specific population. Here, we

could apply factor the investing strategy only to the characteristic-responder subset

where the strategy is particularly effective. Secondly, using fitted treatment effects

τ̂(Xjt), we can characterize the two subsets: for example, for the value factor, τ̂(Xjt)

tends to be very small when stock j’s trailing return is very bad compared with other

stocks. We conduct this type of analysis in section 4.5. Lastly, we could form a

long-short of long-short trading strategy for each factor. Taking value as an exam-

ple, since HML strategy applied to the quintile with the highest τ̂(Xjt) outperforms

the HML strategy restricted to the quintile with the smallest τ̂(Xjt), we could long

the HML portfolio restricted to the value responders and short the HML portfolio

formed within the value traps. This long-short of long-short strategy has an average

monthly return of 0.77%. The same strategy for size and momentum factor have av-

erage monthly returns of 1.54% and 1.18% respectively and both are very significant

statistically. This long-short of long-short strategy takes advantage that the fact that

our τ̂(Xjt) predicts actual τ(Xjt) well enough such that the quintile with the highest

τ̂(Xjt) has higher true τ(Xjt)’s than the quintile with the lowest τ̂(Xjt).

Our work is related to several streams of literature. First, our work falls into the

active research area applying machine learning to empirical asset pricing. [55] apply

different kinds of machine learning algorithms to predicting returns using features

mainly including firm characteristics3. [28] is similar but focuses on deep learning.

The objective of their papers and many other studies are purely to predict cross-

sectional returns using characteristics in a non-linear way. To some extent the ul-

3and their interactions with other aggregate features
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timate goals of those papers and ours are the same: predicting returns in the cross

section. However, we view our detailed analysis of different factors/characteristics as

a middle ground between linear factor models and simple applications of off-the-shelf

black-box machine learning algorithms to return prediction: we study how the ef-

fects and predictability of treatment characteristics on future returns vary with other

characteristics. [47] apply adaptive group LASSO to study the predictive relation-

ship between characteristics and future returns in a nonparameteric way. Their work

assumes an additive structure between different characteristics; therefore interaction

effects between any features are excluded from the model and can only be added in

an ad-hoc fashion by empirical researchers. Our work complements their approach

in the sense that we focus purely on how all other characteristics interact with one

treatment characteristic in a non-linear fashion.

Second, our work is related to causal inference and machine learning, and HTE

estimation in particular. A recent study by [43] in the finance context proposes a

procedure to conduct statistical inference on new factors’ contribution to explaining

cross-sectional returns. Their focus is to get the inference correct after the model-

selection step that chooses a subset of features from a high dimensional set of features

or control variables. Their proposal is related to post-selection inference literature

such as [14] and [31]. All of those papers focus on unbiased estimation and correct

inference on homogeneous effects when machine learning is involved. For theory of

HTE estimation, recent studies include [73], [76] and [28]. Our paper applies R-learner

in [73] to an interesting empirical problem in asset pricing.

Lastly, our work is related to existing studies in finance on factors, characteristics

and expected return in the cross section. [35] find that the data actually support

characteristics, rather than loading on undiversifiable risk factors, to explain cross-

sectional stock returns. As mentioned previously, in this chapter we do not focus on

factor or covariance structure but rather on characteristics, which is the same as most
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machine learning papers in finance such as [55] and [47]. From the efficient market

point of view, we expect that characteristics have predictive power for future stock

returns because they are proxies for loadings on certain fundamental risk factors that

demands risk premium. Along this line of thinking, our HTE estimation for one treat-

ment characteristic could potentially capture how well the treatment characteristic

approximate the loadings to the fundamental risk factor: for “characteristic respon-

ders”, the treatment characteristic is very good proxy for the actual loading on the

underlying risk factor and as a result the treatment effect is strong; for “characteristic

traps”, the treatment characteristic might be very poor in approximating the loading

and thus the treatment effect is weak or even has the opposite sign. On the other

hand, there might be alternative explanations for the predictability of firm charac-

teristics. For example, many existing studies in finance focus on source and driver of

the profitability of momentum strategies. The causal-inference and machine-learning

hybrid approach we take allows us to interpret our estimation results and may shed

some lights on why certain characteristics or factors are profitable. In our empirical

study, we use more recent data to confirm some of the findings in [59] regarding how

momentum strategy’s profitability varies depending on firm size . Our approach has

two distinct advantages over the traditional approach in papers like [59]. First, we

could control for many more confounders at the same time in a nonlinear fashion com-

pared with portfolio sorting, for which controlling for one additional characteristic by

double sorting is easy but becomes very hard for more characteristics; second, our

procedure is fully automated. If we have no prior knowledge on what characteristic

would affect profitability of momentum strategy, our procedure systematically finds

out what features matter most and in what way. Most importantly, we are able to

provide new insights on the problem by showing that other features such as return

volatilities are also important for the profitability of momentum strategies.

The rest of the chapter is organized as follows: section 4.2 explains the background
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of HTE estimation with a brief introduction to causal inference and machine learning

and in particular the estimator we use in our empirical study, R-learner by [73].

Section 4.3 details our algorithmic procedure of applying R-learner combined with

gradient boosting to asset pricing, and section 4.4 presents our main results. In

section 4.5, we go deeper in understanding the HTE estimates and what our fitted

models have captured. Section 4.7 concludes the paper.

4.2 Heterogeneous Treatment Effects Estimation

The main model we consider is given as below:

Yi = μ∗ (Xi) + Ziτ
∗ (Xi) + εi, E [εi|Xi, Zi] = 0 (4.1)

, where Y denotes the outcome we care about and Z denotes a continuous treatment

variable whose effect on Y is denoted by τ ∗(X). X’s are the features other than the

treatment. μ∗(X) is the base-case outcome as a function of X when Z = 0. The

condition E [εi|Xi, Zi] = 0 is often called exogeneous assumption or no endogene-

ity assumptions in linear regression models. We will arrive at equation 4.1 later in

this section. First, we recall the framework of causal inference and treatment effect

estimation in the binary treatment case, which is dominant in the causal inference

literature. We then discuss generalizations to continuous treatment cases and as-

sumptions made therein. Note that binary and continuous treatment variables are

conceptually very similar, but to be clearer, we use different notations: Z denotes

continuous treatment variable while we use W if the treatment is binary. Lastly, we

discuss how we could estimate HTE, and cast the traditional regression approach in

asset pricing as a simple special case to build the connections. Basically, we treat

future stock returns as Y , one firm characteristic as treatment W or Z, and the rest

of firm characteristics as feature X’s.
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4.2.1 Causal inference framework: Binary treatment W

We first briefly recall the causal inference framework before diving into HTE estima-

tion. The framework we take is often called potential outcome framework. We assume

we have n i.i.d. samples of (Xi, Yi,Wi) drawn from a joint distribution f(X, Y,W ),

where

• Yi ∈ R: observed outcome for individual i.

• Xi ∈ R
p: features for individual i of dimension p

• Wi ∈ {0, 1}: whether i receives treatment or not

• “Potential Outcome”: {Yi(0), Yi(1)} depending on whether i gets treatment:

Yi = Yi(Wi)

The focus is on estimating HTE defined as:

τ ∗ (x) = E [Y (1)− Y (0) |X = x] (4.2)

, which are also called conditional average treatment effects (CATE). We use su-

perscript ∗ to emphasize that it is an unknown population quantity. Note that, as

hinted in the introduction section, in this chapter’s empirical study we mainly use

continuous treatment variables like book-to-market ratio but we could also think of

interesting binary treatment variables. For example, W could represent some events

of firms, such as dividend cancellation announcements, where the effects of the event

could potentially be heterogeneous.

The fundamental problem of causal inference is that we only observe one of

{Yi(0), Yi(1)} for each i. The other one in {Yi(0), Yi(1)} is always missing. In the

medical trial setting this problem can be stated as how long will the patient in the

control group live had him taken the drug. In our case, the problem can be stated as

what will the next month return be had the stock announced a dividend cancellation
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in the current month. This is what makes causal inference problem special: if we can

observe both Y (0) and Y (1), we get to observe treatment effect τi = Yi(1)−Yi(0) for

each observation i, too, and HTE estimation reduces to a supervised learning task

using any ML methods to fit to the data set (Xi, Yi(1)− Yi(0)).

To tackle the fundamental problem of causal inference, we need some structure

and assumption in order to recover τ ∗. There are usually two types of studies that try

to infer treatment effects: randomized experiments and observational studies. Ran-

domized experiments are settings where researchers are able to conduct experiments

in a controlled environment by randomly assigning treatment to individuals, which

are common in drug trials and A/B testing conducted by internet companies such as

Facebook and Google. Experiments remain the golden standard of causal inference,

but, unfortunately, in most economic applications, experiments are not feasible. In

this case, we need to work with observed data only and that is called observational

studies. One standard assumption to assume in observational studies is no unmea-

sured confounders: conditioning on the observed features Xi, treatment assignment

Wi is independent of potential outcome (Yi(0), Yi(1)), i.e.

• No unmeasured confounders

(Yi(0), Yi(1)) independent of Wi conditional on Xi (4.3)

Note that in a controlled randomized experiment, assumption (4.3) is automati-

cally satisfied. However, in observational studies, we usually need to assume equation

(4.3) is true. If we have reasons to believe that assumption (4.3) is violated, we have

an endogeneity problem and need to find instrumental variables (IV) for identifica-

tion of treatment effects. See corresponding chapters in textbook such as [89] for

more details along that direction. We explain the meaning of this assumption in our

empirical context in the next subsection, where we describe the continuous treatment

case.
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Under assumption 4.3, we can decompose observed Yi into the following three

terms:

Yi = E [Y (0) |X = Xi] +Wiτ (Xi) + εi (4.4)

,where the last term εi satisfies

E [εi|Wi, Xi] = E [Yi − E [Yi (0) |X = Xi]−Wiτ (Xi) |Wi, Xi]

= 0

Our goal is then to flexibly estimate HTE, that is, the CATE function τ (Xi).

4.2.2 Causal inference framework: Continuous treatment Z

We generalize the model to continuous treatment variable case where the treatment is

denoted by Z. Continuous treatment is not as widely studied in the causal inference

literature compared with binary treatment. Again, outcome variable is denoted by Y

,and the observed outcome becomes Yi = Yi(Zi), Zi ∈ Z, where Z can be a continuum,

and for each individual i, we only get to observe its value for one Zi, Yi = Yi(Zi).

The problem here is more complicated than the binary case, and thus we need to

assume more than just equation (4.3). In particular, we assume that conditional on

X, the effect of increasing one unit of Z is constant regardless of current levels of

Z, in addition to no unmeasured confounders. The assumption in this case can be

described as below:

• Linear treatment and no unmeasured confounders

E [Yi|Xi = x, Zi = z] = μ∗ (x) + zτ ∗ (x) (4.5)

The assumption above implies equation (4.1) in the starting paragraph of this section,

which we repeat below:

Yi = μ∗ (Xi) + Ziτ
∗ (Xi) + εi, E [εi|Xi, Zi] = 0
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The specific model of equation (4.5) has also been studied recently by, for example [9]

and [1]. We will assume equation (4.5) throughout the paper, and therefore equation

(4.1) always holds in our setting. The zero expectation of residual ε conditional on

X,Z in equation (4.1) is often called exogenous assumption. It may seem at first

to be a strong assumption; however, we explain what this assumption means in our

empirical setting in the following section, and this assumption turns out to be no more

restrictive than what is assumed in usual factor model estimation. In fact, equation

(4.1) is much more flexible than standard assumptions of regression approach used in

empirical asset pricing.

4.2.3 Linear factor models as a special case

Before going to HTE estimation, we cast the traditional regression approach to factor

models as a special case of our main specification in equation (4.5). We simplify the

HTE estimation problem into a linear, homogeneoues setting and build the connection

between this setting and the estimation of traditional linear factor models.

Because we are generally interested in continuous variables in asset pricing models,

we cast regression models under our causal framework using equation (4.1), which is

implied by assumption (4.5). We assume the following two additional assumptions

which simplifies the problem significantly.

• The treatment effect is homogeneous, that is.

τ ∗(x) = τ (4.6)

• Linear in features X for base case response μ∗(x):

μ∗(x) = xβ (4.7)

Then under assumptions (4.5), (4.6) and (4.7), equation (4.1) becomes

Yi = Xiβ + Ziτ + εi, E [εi|Zi, Xi] = 0 (4.8)
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OLS theory says that τ̂OLS is consistent for true τ . In linear factor models, we

want to estimate whether or not a particular factor, say, book-to-market ratio for

stock j in month t, can predict stock j’s return for month t+ 1, after controlling for

other firm characteristics represented in Xjt. What we have is essentially panel data

regression, but we care only about the cross-sectional relationship between book-to-

market ratio and next month stock returns. Therefore one way to do the analysis is to

run a panel data regression with time fixed effects, which focuses on variations in the

cross section and averages out along the time axis. In terms of the point estimates,

adding time fixed effect is equivalent to demeaning both the target variable and all

regressors from their monthly average. Denote stock return by r, stock features by X,

the book-to-market ratio by BM . Following [40], we use the log of book-to-market

ratio, logBMjt, in the regression for it has distribution closer to normal distribution.

We have the panel regression equation with cross-sectionally demeaned variables:

rjt − r̄t =
(
Xjt − X̄t

)
β +

(
logBMjt − log ¯BM t

)
τ + εjt (4.9)

,where r̄t =
1
Jt

∑Jt
l=1 rlt and log ¯BM t is similarly defined.

Regression equation (4.9) is related to the possibly more popular called Fama-

Macbeth regression proposed by [42]. See [75] for more about that connection.

Comparing equations (4.8) and (4.9), we can then map quantities in factor models

to ones in the causal framework: rjt−r̄t is our outcome variable Y ,
(
Xjt − X̄t

)
are fea-

tures/other controls X of dimension p, and, most importantly,
(
logBMjt − log ¯BM t

)
is the treatment Z whose effects on next-month returns relative to the cross-sectional

averages,rjt − r̄t, are of primary interests. On the other hand, this comparison also

shows what assumptions are behind usual OLS estimation for traditional linear re-

gression in factor models (equation (4.9). For OLS estimator in equation (4.9) to be

consistent, equation 4.8 must hold, which is often called exogenous condition4. We’ve

4Actually the weakest condition to ensure OLS is consistent is E

[[
Xiεi
Ziεi

]]
= 0
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seen that this is equivalent to assumptions (4.5), (4.6) and (4.7). We keep assumption

4.5 throughout the paper. However, in section 4.2.4 we introduce HTE estimation

techniques developed by the machine learning and causal inference researchers, which

help us relax assumptions 4.6 and 4.7 in our empirical studies.

We next discuss the assumption of no unmeasured confounders or no endogene-

ity assumptions of equation (4.3) and (4.5). Those assumptions imply exogeneous

condition like E[ε|X,Z] = 0, which is the type of assumptions that justifies OLS in

linear models. We assume equation (4.5) and thus (4.1) throughout this chapter. We

argue that this assumption is reasonable for the following two reasons. First, it is no

stronger than the assumptions made in the literature when estimating traditional lin-

ear factor models using regressions. If we run the type of panel regression in equation

(4.9) or similar Fama-Macbeth regressions and start to interpret the sign and mag-

nitude of τ or conduct statistical inference on τ , we are implicitly assuming equation

(4.5) or (4.1) holds. Secondly, compared with prior regression approach that assumes

exogeneity in the finance literature, our empirical study based on HTE estimation

is in a better position to assume no unmeasured confounders and thus mitigate en-

dogeneity problem for the following two reasons: (1) In the existing literature, only

a few characteristics are collected as controls X for regression equations like (4.9),

whereas we include around 40 features as controls X. Endogenity problem caused

by omitted-variable bias is much less of an issue in our study. (2) We also utilize

the features X in a much stronger way in that we estimate a nonlinear function of

X, μ∗(X) as in equation (4.1) instead of using a linear form Xβ. It is possible that

X2 should have been included as a control, but in the linear setup researchers fail

to add them. The mis-specification causes omitted-variable bias and the endogeneity

problem. In our procedure described in the following sections, we could estimate a

flexible functional form for the base model μ∗(X) to alleviate this concern compared

with the traditional approach.
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4.2.4 R-learner for HTE estimation

In this subsection, we explain how we are going to estimate the model in (4.1). There

are many alternatives but we focus on one particular estimator, R-learner, proposed

by [73]. The problem [73] try to tackle is how to turn a good generic black-box predic-

tor into a good treatment effect estimator that has some nice theoretical properties.

In terms of what machine learning tools we can use, R-learner is more flexible than

most HTE estimation methods where “causal” variants of machine learning methods

still require efforts from specialized researchers. Our empirical studies in section 4.4

focus on applications of R-learner.

In this section, we only assume assumption (4.5), and by taking expectation for

both sides of the equation 4.5 conditioning on only Xi, we have

E [Yi|Xi, Zi] = μ∗ (Xi) + Ziτ
∗ (Xi)

E [Yi|Xi] = μ∗ (Xi) + E [Zi|Xi] τ
∗ (Xi) (4.10)

Plugging in (4.10) back into regression equation (4.1), we have the following:

Yi −m∗(Xi) = (Zi − e∗(Xi))τ
∗(Xi) + εi, E[εi|Xi, Zi] = 0, (4.11)

where

m∗(x) :=E[Yi|Xi = x]

e∗(x) :=E[Zi|Xi = x]

In the binary treatment setting, e∗(x) = E[Zi|Xi = x] described above gives the

conditional probability of getting treatment and is often called propensity score in the

causal inference literature. The exposition here follows from [73] and the only minor

difference is that we have a continuous treatment variable Zi as opposed to binary.

Equation (4.11) is our main estimation equation in R-learner. In equation (4.11), we

essentially subtract from Y and Z their conditional expectation conditioning on X.
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This step is often called residualization and is very intuitive: we want to take out

the effects of other controls Xi and isolate the treatment effects τ ∗. [78] first Utilized

The residualization form of equation (4.11) for the binary case.

We next recall the R-learner HTE estimator and a few of its variations below.

First, an oracle with knowledge of true population quantities m∗(x) and e∗(x) can

estimate function τ ∗ by

• Oracle estimator τ̃(x):

τ̃ := argmin
τ(x)

{
1

n

n∑
i=1

(Yi −m∗ (Xi)− (Zi − e∗ (Xi)) τ (Xi))
2 + Λn (τ (x))

}
,

(4.12)

where Λn is the regularization term that should be tuned by cross-validation (CV).

We could think of it as similar to the L1 penalty term in LASSO regression, or the

maximum tree depth in tree related methods. This term is crucial since without this

regularization, we could minimize the training error to a point overfitting the data

and failing to generalize.

In reality, we cannot implement the oracle estimator, but we can estimate first

m∗ and e∗ and plug our estimates m̂ and ê into the minimization problem in (4.12),

which is the R-learner proposed by [73]:

• R-learner τ̂(x) is estimated as below, where m̂(−i)(Xi) and ê(−i)(Xi) mean hold-

out predictions made by models m̂ and ê fitted to data without the ith data

point:

τ̂ := argmin
τ(x)

{
1

n

n∑
i=1

(
Yi − m̂(−i) (Xi)−

(
Zi − ê(−i) (Xi)

)
τ (Xi)

)2
+ Λn (τ (x))

}

(4.13)

In summary, we could implement the R-learner in the following two steps:

• Step 1: Fit m(x) and e(x) via any black-box predictive methods tuned for

optimal predictive accuracy using CV.
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• Step 2: Minimize the causal loss function plus regularization term Λn (τ (x)),

again via any black-box methods. Use CV to tune hyperparameter to combat

overfitting:

τ̂ := argmin
τ(x)

{
1

n

n∑
i=1

(
Yi − m̂(−i) (Xi)−

(
Zi − ê(−i) (Xi)

)
τ (Xi)

)2
+ Λn (τ (x))

}

Note that we use hold-out predictions for nuisance components m∗(x) and e∗(x)

when estimating what we care about in step 2. This usage of hold-out predictions is

also known as cross-fitting for its similarity to cross-validation. The difference is that

here we want to use hold-out predictions in fitting our main parameters of interests

as opposed to evaluating performance of predictive models. It is a widely used trick

in making correct statistical inference when machine learning methods are involved

([10] and [30]). Usually, k-fold cross-fitting is used, and in our empirical study, we

set k = 5.

[73] show R-learner has nice theoretical guarantees. For example, with additional

assumptions on the true form of τ ∗ and the machine learning algorithms used, [73]

prove that E
[
(τ̂n (Xi)− τ ∗ (Xi))

2] converging to 0 as fast as E
[
(τ̃n (Xi)− τ ∗ (Xi))

2].
Also, as mentioned earlier, although the nice properties from theory require certain

conditions, we are free to use any black box predictors in R-learner when implementing

it in practice, which makes the approach very flexible.

[73] named their procedure R-learner, based on Robinson’s transformation, partly

to recognize [78]’s work and partly to emphasize the importance of residualization.

In the next section, we describe how we apply R-learner to our setting of factor

models.

145



www.manaraa.com

4.3 Application of the R-learner to Factor Models

4.3.1 Algorithmic procedure

We first need to choose what feature to use as treatment Z and the remaining features

collected will be control features X. We collect and calculate around 40 features,

including items from companies’ balance sheets, past returns, past volatilities, trading

volumes, and so on. The full feature list is given in Table D.1 in the appendix. Note

that we have panel data, and therefore the subscript index is j,t instead of just i.

We focus our study on characteristics associated with Fama-French 3 factors plus

momentum as possible treatments. We pick one of size, value and momentum at a

time as the treatment variable, and use the rest as controls. We use log book-to-

market ratio logBMjt as the treatment to describe the procedure, and the steps for

the other two treatment variables are the same except for changing the treatment.

We use Dtrain to denote the set of (j, t) pairs belonging to training set.

Since we are mainly interested in the cross-sectional relationship between treat-

ment variable and future stock return, inspired by panel regression equation (4.9), we

demean the response variable, the treatment variable and all control variables by their

cross-sectional averages except for ratio based features5. Note that as pointed out

before, this demeaning procedure corresponds to adding time-fixed effects in panel

regression and it is very intuitive: the outcome we care about is not really the ex-

act level of stock returns but each stock’s return compared with the cross-sectional

average. In addition, to make values across different time periods more comparable,

we further standardize all non-ratio variables by their cross-sectional standard devi-

ations, to ensure that all non-ratio variables have mean 0 and standard deviation 1

for every month. Sometimes this pre-processing step is called feature normalization

or standardization in machine learning. We only perform this standardization on

5
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non-ratio variables since ratio-based variables such as log of book-to-market ratio are

already comparable across stocks and months. We list which variables are ratio-based

in Table D.1. We use ˙ to denote our operations of pre-processing on target variable,

treatment variable, and control variables. That is, for any variable xjt of stock j at

month t,

ẋjt :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xjt for ratio-based feature x

xjt− 1
Jt

∑Jt
k=1 xkt√

1
Jt−1

∑Jt
v=1

(
xvt− 1

Jt

∑Jt
k=1 xkt

)2
otherwise

(4.14)

Thus, for our application, using Robinson’s transformation in the R-learner, under

assumption (4.5), we have that

ṙj,t+1 −m∗(Ẋj,t) = τ(Ẋj,t)
(
Żj,t − e∗(Ẋj,t)

)
+ εj,t, (4.15)

where

m∗(x) :=E[ṙj,t+1|Ẋj,t = x]

e∗(x) :=E[Żj,t|Ẋj,t = x]

For example, when logBMj,t is the treatment variable Z, since logBMj,t is a

ratio-based feature, we have

Żj,t = ˙logBM j,t = logBMj,t

Note that all variables involved in equation (4.15) have a ˙ above them.

[73] try several different machine learning methods such as boosting and LASSO,

in step 1 and 2 of the R-learner procedure, to fit m, e, and τ models. We decide

to focus on gradient boosting ([48]) and the particular implementation we choose is

xgboost by [29]. Gradient boosting is sometimes considered as the best off-the-shelf

regression method in machine learning for its impressive performance and relative

ease to use. The particular implementation by [29] is very efficient, powerful, and has
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been used by many winning teams in predictive data science competitions6. It also

has the ability to deal with missing values easily, which comes handy in our situations

because a lot of balance sheet items are missing for some stocks from time to time.

When training m, e, and τ models in the R-learner procedure described in Table 4.2,

we always use xgboost.

We next describe how cross-validation is used to do some basic hyper-parameter

tuning for xgboost when fitting m, e, and τ models. We decide to use five-fold CV

and the folds are split randomly but based on months. To be precise, we randomly

split all months in the training data into five folds, denoted by l = 1, 2, 3, 4, 5. We use

L to denote the mapping from months t to ID of folds resulting from the random fold

splitting; that is, L(t) = l if and only if month t is assigned to fold l. All stock month

pairs (j, t) s.t. L(t) = l belong to fold l, l = 1, 2, 3, 4, 5. We define then L(j, t) := L(t).

For the m model, we train five different versions based on which fold is left out in the

training data. For example, we train one model using data from folds l = 2, 3, 4, 5

and leaving out fold l = 1. Denote this fitted model as m̂(−1) where the superscript

minus 1 means that data points in fold l = 1 are excluded during training. m̂(−l), ê(−l)

and τ̂ (−l) are similarly defined for l = 1, 2, 3, 4, 5. We choose a few hyper-parameters

(listed in Table 4.1) that are particular important to gradient boosting to tune via

CV. We use randomized grid search: first we define a reasonable search range for all

hyper-parameters to tune and we randomly select five sets of hyper-parameter values

within the ranges specified in Table 4.1 in a uniform fashion. We record the five sets

of hyper-parameter values and for each set of values, we train the five m models to

get m̂(−l) for l = 1, 2, 3, 4, 5 and use out-of-fold predictions to form the evaluation

metric based on squared loss. The CV evaluation metric for the e model is similarly

6See www.kaggle.com for details on such data science competitions
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defined. To be precise,

CVm :=
∑

j,t∈Dtrain

(
ṙj,t+1 − m̂(−L(j,t))

(
Ẋj,t

))2

(4.16)

CVe :=
∑

j,t∈Dtrain

(
Żj,t − ê(−L(j,t))

(
Ẋj,t

))2

(4.17)

We record the hyper-parameter value yielding the best (smallest) evaluation met-

rics CVm and CVe for the m and e models respectively. m̂(−l), l = 1, 2, 3, 4, 5 denote

models that are trained using the best hyper-parameter values in terms of CVm, and

so do ê(−l). Now, we are ready to list the first two steps of the R-learner procedure

in our setting with full details.

• Step 0: Conduct random splitting into five folds based on months t. Use L(j, t)

to denote the resulting mapping from (j, t) to fold ID. We keep the folds the

same throughout the following steps.

• Step 1: Use xgboost to fit outcome ṙj,t+1 using features Ẋj,t only. Randomly

generate five sets of hyper-parameter values based on ranges specified in Ta-

ble 4.1. For each set of hyperparameter values, fit five different versions,

m̂(−l) for folds l = 1, 2, 3, 4, 5 and record the CV loss CVm. Pick the set of

hyper-parameter values that yields the smallest CVm. Record the best hyper-

parameter values and save m̂(−l), l = 1, 2, 3, 4, 5 that are trained with the best

hyper-parameters for future use.

• Step 2: Repeat step 1 but for e models. use xgboost to fit outcome Żj,t using

features Ẋj,t only. Randomly generate five set of hyper-parameter values based

on ranges specified in Table 4.1. For each set of hyperparameter values, fit five

different versions, m̂(−l) for folds l = 1, 2, 3, 4, 5 and record the CV loss CVe.

Pick the set of hyper-parameter values that yields the smallest CVm. Record
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the best hyper-parameter values and save m̂(−l), l = 1, 2, 3, 4, 5 that are trained

with the best hyper-parameters for future use.

Next, we describe the final step of HTE estimation: estimating the τ ∗ function.

There is another detail of R-learner in this step, namely, the cross-fitting (CF). We

record out-of-fold predictions from our fitted m and e models in preparation for

estimating τ(x). That is, for each (j, t) pair in the training set, m̂(−L(j,t))(Ẋj,t) and

ê(−L(j,t))(Ẋj,t) are computed and recorded. Note that we use the same fold assignment

as in the cross-validation stage of steps 1 and 2. In the final step, we use xgboost to

minimize the following causal loss function over τ(x).

L̂n (τ ;Dtrain) =
∑

j,t∈Dtrain

(
ṙj,t+1 − m̂(−L(j,t))

(
Ẋj,t

)
−

(
Żi − ê(−L(j,t))

(
Ẋj,t

))
τ
(
Ẋj,t

))2

(4.18)

The fact that out-of-fold predictions m̂(−L(j,t)) and ê(−L(j,t)) are used in fitting is

to follow CF, which is key to avoid biasing the results. We again use CV to prevent

overfitting. We randomly generate five sets of hyper-parameter values, and for each

set of hyper-parameter values, we minimize minτ(x) L̂n (τ ;Dtrain) and determine the

number of boosting iterations by early stopping when the following CV error stops

decreasing:

CVτ :=
∑

j,t∈Dtrain

(
ṙj,t+1 − m̂(−L(j,t))

(
Ẋj,t

)
−

(
Żi − ê(−L(j,t))

(
Ẋj,t

))
τ̂ (−L(j,t))

(
Ẋj,t

))2

(4.19)

We record the set of hyper-parameter values that yield the smallest CVτ . Then,

we use the best hyper-parameter values to train τ model using all training data by

minimizing (4.18), to get the final HTE estimator τ̂ . We repeat step 3 below:

• Step 3: Use output from the previous two steps to generate m̂(−L(j,t))(Ẋj,t) and

ê(−L(j,t))(Ẋj,t) for all (j, t) in Dtrain. Use xgboost to minimize loss function

L̂n (τ ;Dtrain) over τ(x). Again, use CV to control overfitting: use xgboost
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Hyper-parameters Range for random search
max tree depth {3, 4, ..., 20}
learning rate {0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.5}
bootstrap fraction {0.5, 0.75, 1}
feature sampling fraction {0.6, 0.8, 1}
γ [0, 0.2]
min leaf weights {1, 2, 3, ..., 20}
max delta step {1, 2, 3, ..., 10}
max number of trees (iterations) 300
number of trees Determined by early stopping based on CV

loss with a patience of 10 rounds, which means
that we terminate training if CV loss stops de-
creasing for 10 rounds. The number of itera-
tions/trees chosen is then the one minimizing
CV loss

early stopping rounds for number of trees 10

Table 4.1: Random search ranges for hyper-parameters to tune

to fit outcome ṙj,t+1 using features Ẋj,t only. Randomly generate five sets of

hyper-parameter values based on ranges specified in Table 4.1. For each set of

hyperparameter values, fit five different versions, τ̂ (−l) for folds l = 1, 2, 3, 4, 5

and record the CV loss CVτ . Pick the set of hyper-parameter values that yields

the smallest CVτ . Record the best hyper-parameter values and retrain one

single τ model by minimizing L̂n (τ ;Dtrain) with the best set of hyperparameter

values over all training data. The resulting model from this last step is our final

HTE estimator τ̂(x).

We summarize the entire R-learner procedure used in our setting in Table 4.2.

4.4 Empirical Results

4.4.1 Data description

Our data period is from Jan 1996 to Dec 2018. All features used in Xj,t are listed in

Table D.1. We use all stocks listed on NYSE, NASDAQ and AMEX. All price and

volume related features in Table D.1 are calculated using CRSP data while all bal-
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Steps Details
Step 0: preparation 1. Conduct random splitting into 5 folds based on months

t.
2. Use L(j, t) to denote the resulting mapping from (j, t)
to fold ID.
3. L(j, t) is kept the same for use in steps 1, 2 and 3.

Step 1: m model 1. Use xgboost to fit ṙj,t+1 using Ẋj,t only.
2. Using folds L(j, t) from Step 0 to conduct 5-fold CV, pick
the best set of hyper-parameter values that minimizes CVm

from the five randomly generated sets of hyperparameter
values based on ranges specified in Table 4.1.
3. Save the final five models with the best hyper-parameter
values m̂(−l), l = 1, 2, 3, 4, 5.

Step 2: e model 1. Use xgboost to fit continuous treatment Żj,t using Ẋj,t

only.
2. Using folds L(j, t) from Step 0 to conduct 5-fold CV,
pick the best hyper-parameter values that minimizes CVe

from five randomly generated sets of hyperparameter val-
ues based on ranges specified in Table 4.1.
3. Save the final five models with the best hyper-parameter
values ê(−l), l = 1, 2, 3, 4, 5.

Step 3: τ model 1. Take the trained models from previous two steps to
generate m̂(−L(j,t))(Ẋj,t) and ê(−L(j,t))(Ẋj,t) for all (j, t) in
training set following cross-fitting. Save those out-of-fold
predictions for τ model estimation.

2. Use xgboost to minimize L̂n (τ ;Dtrain) over τ(x). Use
the same folds L(j, t) to conduct 5-fold CV in order to
control overfitting. Pick the best hyper-parameter values
that minimizes CVτ from five randomly generated sets of
hyperparameter values based on ranges specified in Table
4.1.

3. Train a single τ model by minimizing L̂n (τ ;Dtrain) over
all data points in training set Dtrain with the best hyper-
parameter values obtained in Step 3.2 above. This is our
final HTE estimator and we denote it by τ̂(x).

Table 4.2: R-learner procedure in our empirical exercise
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ance sheet related features are calculated using annual report data from Compustat.

We merge the monthly data from CRSP and Compustat. Since it is reasonable to

believe that market situation evolves over time, we use a 10-year rolling window when

applying estimation procedure described in Table 4.2. We do not refit the model ev-

ery month since the estimates are unlikely to change a lot by shifting the training

window by just one month. Instead, we repeat the entire procedure in Table 4.2 at

each year end, using the past 10 years’ data and we keep the estimated models the

same without refitting for 12 months until the next year end. Therefore we obtain

an estimated function, τ̂ , for each year using only past data (the previous 10 years

preceding the current year) to avoid look-ahead bias in our backtest. For each stock

month pair (j, t) in our backtest, we make stock-month specific prediction, τ̂(Xj,t),

using model τ̂ obtained from data in the most recent 10-year rolling window. Since

our entire data period is from Jan 1996 to Dec 2018 and we use a 10-year rolling

window for training, the first month for our out-of-sample test period is Jan 2006

using feature values from Dec 2015. The test set ends in Dec 2018. Therefore, all

results presented in this section are from Jan 2006 to Dec 2018.

4.4.2 Long-short of long-short test

4.4.2.1 Description of the test

Note first that we have no way to observe true τ ∗(Xj,t) to evaluate the performance

of τ̂(Xj,t) in terms of predicting τ ∗(Xj,t). Thus, we choose a very intuitive portfolio

sorting test that is similar to what is usually performed in asset pricing papers. If

again we use the value factor as the treatment for illustration purposes, the high

level idea is to test whether we are able to utilize our τ̂(Xj,t) to identify subsets of

stocks in which an HML strategy restricted to those subsets have different average

returns. If τ̂(Xj,t) successfully capture the heterogeneity of the treatment effects, then

we expect to see that an HML strategy applied to the subset of stocks with highest
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τ̂(Xj,t) would have the greatest average returns since highest τ̂(Xj,t) suggests that

those stocks’ future returns respond the strongest to the higher value measures. They

are the characteristic responders. On the contrary, if we focus on the subset of stocks

that have the smallest τ̂(Xj,t), these stocks’ cross-sectional returns should be affected

the least by value measures or even respond negatively to higher valuation measures.

These stocks would be the value traps where an HML strategy won’t generate a good

expected return. We design a long-short of long-short portfolio test to check whether

this is the case in our data.

We describe our test procedure here. At the end of each month t, we sort all

stocks into five quintiles based on τ̂(Xj,t). We call the five quintiles τ̂ quintiles7.

Next, within each τ quintile, we perform the usual long-short strategy based on

treatment variable considered: sorting based on treatment into five quintiles. Using

value as an example, within each tau quintile, we further sort stocks into five quiniles.

We call these five quintiles treatment quintiles. We long the treatment quintile with

the highest treatment and short the lowest to form the long-short trading strategy

within each τ quintile. We also call this trading trategy P5 - P1 since we sort stocks

on treatment characteristic into five portfolios, and we long the fifth portfolio while

shorting the first portfolio. We hold all five P5-P1 long-short strategies for each

tau quintile during month t + 1 and repeat everything at the end of month t + 1.

We calculat average returns and conduct alpha analysis for the long-short strategies

restricted to each tau quintile. As a benchmark, we also repeat our analysis on naive

long-short strategies based on the treatment variable for the entire universe of stocks

during our test period, ignoring information from τ̂(Xj,t)’s. For the average returns,

7Note that, for some months we might see lots of stocks having exactly the same τ̂ . We make
sure that the two extreme τ̂ quintiles have stocks in them through the following way. We calculate
min τ̂ , max τ̂ and 20th, 40th, 60th, 80th percentiles of τ̂ . Then τ̂ 1 quintile is the stocks with
τ̂(Xj,t) ∈ [min, quantile20%]. l

th quintile, where l = 2, 3, 4, 5, is defined similarly. τ̂ 2 quintile: stocks
with τ̂(Xj,t) ∈ (q20%, q40%); τ̂ 3 quintile: τ̂(Xj,t) ∈ [q40%, q60%); τ̂ 4 quintile: τ̂(Xj,t) ∈ [q60%, q80%);τ̂
5 quintile: τ̂(Xj,t) ∈ [q80%,max]. This way number of stocks might be different for the 5 τ̂ quintiles
and the two extreme quintiles ˆtau 1 and ˆtau 5 quintiles tend to be larger
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we would expect that as we move from the first τ quintile (20% stocks with the

smallest τ̂(Xj,t)) to the fifth τ quintile (20% of stocks with the largest τ̂(Xj,t)), the

long-short strategies’ average returns should be roughly increasing. Instead of testing

monotonicity, we opt for a simpler approach focusing on the two extreme τ quintiles:

we form a strategy by “longing” the long-short strategy restricted to the fifth τ

quintile and “shorting” the long-short strategy applied to the first τ quintile. We

statistically test whether or not this long-short of long-short strategy will generate

positive returns or not and also conduct alpha analysis with respect to standard

factors. We call this test “long-short of long-short” test since we take a long position

on one long-short strategy while shorting another long-short strategy. Connecting

to the simulation plots we show in Figure 4.2, we think that τ̂ 5 quintile consists

of the value responders while the τ̂ 1 quintile has the value traps in this case. To

some extent, our long-short of long-short test is testing the difference in the slopes

or treatment effects between the two groups8. We repeat the same test for different

treatment variables: value, size, and momentum.

Our long-short of long-short test is designed for two purposes. First, the goal is to

test whether or not our τ̂(Xj,t) is able to differentiate subsets of stocks for which long-

short strategy returns differ. Because observing true treatment effects function τ ∗(x)

is impossible, we have to come up with some way to test whether our fitted model

τ̂ is useful in that the high τ̂(Xj,t) stocks are indeed having larger treatment effects

than low τ̂(Xj,t) stocks. We choose long-short of long-short test since it is intuitive

and has an interpretation of monthly return of a particular trading strategy. Since we

always long the long-short strategy within the τ̂ 5 quintile and short the long-short

strategy within the τ̂ 1 quintile, we expect long-short of long-short to have positive

8Note that a P5-P1 long-short strategy return does not correspond exactly to slope or treatment
effects in the sense that it just reflects how much the response has changed, without taking into
account how much the treatment variable changes. And as we see in the result tables later, the
range of treatment characteristics within each τ̂ quintile can be quite different.
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average returns. If it turns out that our test statistic is negative or insignificantly

positive, there can be two reasons: 1) the true effects are homogeneous i.e., τ ∗(x) = τ

(assumption (4.6) holds), or 2) the true treatment effects are heterogeneous but our

fitted τ̂ are not accurate enough to the point where stocks in τ̂ 5 quintile have higher

τ ∗ than stocks in the τ̂ 1 quintile.

Second, our long-short of long-short test can potentially be implemented by in-

vestors to harvest its returns and alphas. We think of two strategies to utilize our

HTE estimates if our long-short of long-short test is significantly positive: (1) We

could just apply the long-short strategy within the characteristic responders. Use

value again as an example. If we have priors that a P5-P1 HML strategy applied

to the entire universe is going to have positive average returns, we could just apply

P5-P1 strategy to the characteristic responders: the τ̂ 5 quintile with the largest

τ̂(Xj,t). And we could raise the alarm whenever we consider buying any stocks due

to their attractive valuation metric if they are from the characteristic trap subset. (2)

We could directly trade the long-short of long-short strategy. However, we note that

the long-short of long-short strategy is different than long-short strategy restricted

to some subset. We expect the long-short of long-short strategy to not consider-

ably load on the treatment characteristic. For example, if the treatment variable

is book-to-market ratio, the long-short strategy formed on BM ratio is betting on

value but our long-short of long-short is expected to be roughly neutral to value: the

long-short of long-short strategy is purely betting on differences in P5-P1 strategies’

returns between the two subsets, which is an approximation to differences in true

treatment effects τ ∗ between the two subsets. As pointed out, P5-P1 strategies are

equal weighted in our study and we acknowledge that due to equal weighting, the

strategies we discuss here might not be implementable at large scale if the strategies

tend to assign too large weights for tiny cap stocks.

When calculating long-short strategy returns, returns of all long portfolios and
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short portfolios are equal weighted, and likewise for the naive long-short strategy

applied to the entire universe as a benchmark. We next make a few comments about

the choice of equal weighting as opposed to value-weighting, which is more common

in finance literature. First, during our training stage described in Table 4.2, all data

points are equal-weighted. For a highly flexible machine learning procedure like ours,

it is important to make sure the test distribution is the same training distribution.

Using equal-weighted portfolios in our long-short of long-short test corresponds to

applying equal weights to each data point during training, which is obviously what

our procedure does based on, for example, the form of the loss function specified in

equation (4.18). We surely can apply different weights during training, say, weighting

all data points by market cap. However, value weighting during training also has an

issue during the test stage: when calculating long-short portfolio returns, only within

the long and short portfolio can we ensure stocks are weighted by their size. If we

combine the long and short positions together to form a long-short strategy, again,

it is not value-weighted anymore. To see this, we give an extreme example with only

four stocks in the universe, whose market caps are 1$, 1$, 10$ and 10$. If, according

to some signal, we need to long the two 1$ stocks and short the two 10$ stocks, then

in the final long-short portfolio formed, we are giving equal weights to all four stocks,

regardless of whether we are using equal weighting or value weighting within the long

portfolio or short portfolio. This mismatch or inconsistency is problematic since if

we decide to use value weight during training, in the training process, the two 10$

stocks get a weighting that are 10 times of the two 1$ stocks; however, during the

sorting portfolio tests, all four stocks get equal weights. In fact, there are no way

we could predetermine weights for all stocks during training phase such that it is

consistent with the usual value-weighted portfolio-sorting tests because we cannot

know the composition of the long-short portfolio beforehand. Second, we argue that

equal weighting is not a big concern in our case since the purpose of the long-short
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of long-short test is not entirely on finding a profitable trading strategy that can be

realized at large scale by investors. We are comparing different equal-weighted long-

short strategies to check whether the effect of treatment variables on stock returns is

heterogeneous, and, in case the treatment effects are heterogeneous, whether our HTE

estimation successfully differentiates characteristic responders and traps from the

entire universe. Also, we use the equal-weighted version of the unrestricted long-short

strategy applied to the entire universe as a benchmark to make sure any comparison

is fair. Our main results are equal-weighted and for completeness, we leave the value-

weighted results in the appendix.

We discuss the results for different treatments in the following subsections.

4.4.2.2 Results for value as the treatment variable

We present results of the long-short of long-short test in Table 4.3 for logBMj,t as

the treatment variable. To be precise, Ż = ˙logBM in this case. Table 4.3 has four

panels. The top panel shows long-short strategy returns and alphas for the entire

universe (column full), each of the five τ̂ quintile (columns τ 1-5). Essentially we

apply the P5-P1 HML strategy to different universes: the full universe and each of

the five τ̂ quintiles. To be precise, we form long-short strategy by sorting stocks in full

universe or each τ̂ quintile into five quintiles (called treatment quintiles) based on the

treatment variable, logBMj,t. We buy the stocks in the highest treatment quintile

and short the stocks in the lowest treatment quintile as our long-short strategy. The

long-short of long-short strategy, as described before, is just that we long the long-

short strategy in the fifth τ̂ quintile and short the long-short strategy in the first τ

quintile. The results of the long-short of long-short strategy is presented in the last

column, “5 − 1”. The four rows in the top panel are, respectively, average returns,

alpha to CAPM, alpha with respect to Fama-French 3 factor model plus momentum,

and alpha to Fama-French 5 factor model plus momentum. The numbers in brackets
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are t-stats calculated using Newey-West robust standard errors ([72]). All return

and alpha numbers are monthly in percentage. ∗, ∗∗ and ∗ ∗ ∗ are used to indicate

significance at levels 10%, 5% and 1% respectively. All portfolios involved are equal-

weighted.

We can see that in our test period, the HML strategy applied to the full universe

actually has an average monthly return of only 0.25% and is not statistically signif-

icant. Although after controlling FF3 and FF5 factors it has significant alphas, the

magnitudes, 0.49% for FF-3-MOM and 0.39% for FF-5-MOM, are not large9. Aver-

age returns of the HML strategy for the five τ̂ quintiles roughly follow an increasing

pattern when we move from left to right columns. For the fifth τ quintile, average

return of the HML strategy is 0.71% which is almost 3 times of the average return if

we apply HML to the full universe. And it is statistically significant, whereas for the

first τ quintile, the average return is negative and not significant. The observations

from alpha analysis are similar to average returns. From the test results we can see

our HTE estimation indeed successfully separates out stocks whose returns respond

differently to book-to-market ratios in the cross section, especially by looking at the

two extreme τ quintiles. Note that the average return of the HML strategy applied

to the full universe sits nicely between the HML average returns for τ̂ 1 quintile and

τ̂ 5 quintile. If we look at our long-short of long-short test, the difference between

returns of HML strategies restricted to the τ̂ 5 quintile and τ̂ 1 quintile is statisti-

cally significant and it also has very significant alphas after controlling for standard

Fama-French and momentum factors. The magnitude of alphas are between 0.78% to

0.98% depending on the right-hand-side factors. We have a prior that value factor has

positive average returns, i.e., the average effects of value on future return should be

positive. Thus, we interpret the fifth τ quintile, which consists of 20% of stocks with

9The reason that we have statistically significant alphas with respect to value factor on the right
hand side as one control could be that we are using equal-weighted portfolios.
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the largest τ̂ , as value responders in the value case, whereas we call the first τ quintile

the value traps that we identified. Interestingly, by looking at τ̂ quintile 2, we note

that FF-5-MOM alphas are more monotonic from τ̂ quintile 1 to 5, compared with

average returns of the P5-P1 long-short strategy, which might not be a coincidence.

As discussed later in section 4.4.2.6, long-short strategies based on single sorts do

not control for anything and are susceptible to confounding. If we view FF-5-MOM

alpha as a way to control for exposures to standard factors in the long-short strategy

return, we should expect FF-5-MOM alphas to be more aligned with our τ̂ and more

monotonic from quintile 1 to 5.

In the second panel, we present cross-sectional summary statistics of τ̂ for the

full universe and five τ̂ quintiles. We calculate the 25th percentile, median, 75th

percentile, and the average and standard deviation of τ̂ in the cross section for each

month, and we average those summary statistics across all months for the full universe

and the five τ̂ quintiles. Recall that logBMj,t is a ratio-based treatment and we do

not standardize it but we do standardize the response: future stock returns. We

can then interpret τ̂ as how many standard deviations of a change in Y will be

induced if the book-to-market ratio increase by 1%. Note first that by construction,

the numbers are increasing from τ 1 quintile to τ 5 quintile. Second, there are still

quite some variations in τ̂ left within each τ quintile, especially in the two extreme τ

quintiles, 1 and 5. This finding suggests that, according to our model, although we

categorize stocks into 5 quintiles, it is likely that stocks within each τ̂ quintile still have

heterogeneous treatment effects. If we focus solely on average τ̂ for each τ̂ quintile

and compare it with the signs of long-short strategy returns, we find they are largely

consistent except for τ̂ quintiles 3 and 4. We note that some discrepancies like this

are expected: even if our τ̂ are the true τ ∗, due to reasons discussed later in section

4.4.2.6, the relationship between τ̂ and long-short returns could be complicated.

In the third panel, we present the spread of treatment characteristics. Because
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we sort stocks into five treatment quintiles within each τ̂ quintile and within the full

universe, checking the range of the treatment variable within each τ̂ quintile is useful.

Take the first column “full” as an example. For each month, we calculate the average

of Ż across all stocks and average them across all months, which yields the results in

the first row of the third panel. For the second and third row, we sort all stocks in

the full universe into five treatment quintiles based on the treatment logBMj,t, and

calculate, for each month, the average of Ż in the first treatment quintile with the

smallest Ż, and the average of Ż in the fifth quintile with the largest Ż and then

again we average them across all months. For the last row of the third panel, we

calculate the spread of treatment Ż between the fifth treatment quintile and the first

treatment quintile: we simply subtract the second row from the third row. We repeat

the same calculations for each of the five τ̂ quintiles in columns τ̂1 to τ̂5. We see from

Table 4.3 that the spread of Ż is similar across different τ̂ quintiles. The distributions

of treatment variable Ż are stable across different τ̂ quintiles. Also, recall that the

treatment logBMj,t is not standardized and therefore in the full universe, average Ż

is not zero (−0.69).
In the bottom panel, we present some additional information about the full uni-

verse and the five τ̂ quintiles. Again, we calculate each summary statistic in the

cross section for the five τ̂ quintiles and the full universe during each month and then

average across all months. We include the number of stocks, book-to-market ratios,

market equity in billions of dollars, and average monthly volume in million shares.

In addition, in order to get some ideas of how stable each τ̂ quintile, we calculate

a persistence statistic for each τ̂ quintile. Fix one τ̂ quintile. For each month t, we

calculate the percentage of stocks that will remain in the same τ̂ quintile in the next

month t + 1. Again, we average this percentage across all months. We can see that

the average firm sizes across all five τ quintiles are similar from Table 4.3. Average

book-to-market ratios are similar for the two extreme τ quintiles.
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4.4.2.3 Results for size as the treatment

We next look at the results for size as the treatment variable in Table 4.4. To be

precise, Ż = ˙logME, where ME stands for market equity. To be consistent across

different treatment variables, we present in the top panel of Table 4.4 the P5-P1 long-

short strategy’s returns and alphas. That means instead of the more familiar small-

minus-big (SMB), we are actually presenting results of P5-P1 big-minus-small (BMS)

strategies restricted to different subsets of the full universe (and the unrestricted full

universe). This ensures that signs of average returns of long-short strategies are the

same with the signs of treatment effect τ : if we expect smaller firms to earn higher

average returns, we should expect P5-P1 BMS strategy applied to the full universe

to have negative average returns and τ̂ to be mostly negative too. Keeping using

P5-P1 across all treatment variables also ensures that the long-short of long-short

test statistic is expected to be positive for all treatment variables.

From the top panel, we can see that the τ̂ 1 quintile has very negative and sig-

nificant returns and alphas, −1.43% average returns and −1.86% FF-5-MOM alpha.

Since we expect that, on average, size negatively affects returns, τ̂ 1 quintile consisting

of stocks with the most negative treatment effect is where we expect the treatment

characteristic to work the best. Therefore, τ̂ 1 quintile is the characteristic-responder

subset and τ̂ 1 quintile has the characteristic traps identified by our procedure. Our

procedure works very well especially on identifying size responders: the τ̂ 1 quntile

has the most negative average returns and alphas for BMS strategy compared with

the other 4 quintiles and the full universe. The difference in magnitudes are huge

too: the average return in τ̂ 1 quintile is −1.44%, whereas the next closest number

is −0.03% for τ̂ 2 quintile. Note that average BMS returns increase as we move

from quintile 1 to 5 except for τ̂ 3 (τ̂ 4 and 5 quintile have very similar average

returns). Interestingly, FF-5-MOM alphas are more monotonic compared with av-

erage returns. In particular, τ̂ 1 quintile has the most negative FF-5-MOM alpha,
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−1.87% while τ̂ 5 quintile has the least negative FF-5-MOM alpha, −0.05%. For our

test period, big-minus-small strategy actually has a slightly positive average return

for the full universe, though the magnitude, 0.15%, is really small. The FF-5-MOM

alpha for BMS strategy on the full universe is negative, −0.24%, and not significant

as expected. The FF-5-MOM alpha and average return for the long-short strategy

restricted to the τ̂ 1 quintile are more than 7 times larger in magnitude than those

of the long-short strategy for the full universe. Our long-short of long-short test is

significantly positive and large in magnitude too: the strategy has an average return

of 1.54% and 1.80% FF-5-MOM alpha.

For the second panel of Table 4.4, recall that ME is not ratio-based and thus

we cross-sectionally standardize the treatment. As a result, we could interpret the

values of τ̂ as how many standard deviations of a change in average returns will be

caused by a one-standard-deviation increase in the treatment variable. As expected,

most τ̂ are negative except for the τ̂ 5 quintile since size factor works well in the past.

If we compare the sign of average τ̂ with the sign of average BMS returns, for the

τ̂ 3 and 4 quintiles the signs between long-short average returns and average τ̂ are

the opposite. As will be discussed in section 4.4.2.6, this discrepancy is somewhat

expected. Similar to the observation on the monotonicity of the FF-5-MOM alpha in

the value treatment case, signs of the average τ̂ are more consistent with the signs of

FF-5-MOM alphas compared with the signs of BMS average returns: except for the

τ̂ 5 quintile where the average τ̂ is positive and the FF-5-MOM alpha is negative, the

rest of τ̂ quintiles are consistent.

For the last panel, it is striking that τ̂ is so correlated with firm size. The average

of market equity is increasing from τ̂ 1 to 5 quintile and the τ̂ 1 quintile’s average

firm size is only 0.6 billion$, which suggests that the SMB strategy works the best10

among the smallest stocks. This discrepancy in firm sizes across different τ̂ quintiles

10Equivalently we could say the BMS strategy performs the worst among the smallest stocks
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definitely has an impact on how much of the returns and alphas presented here can be

realized by investors trading the long-short of long-short strategy strategy when size

is the treatment variable. Because during all model training we exclude the treatment

variable from our featuresX, this must result from the fact that we have some features

that are correlated with size, such as total asset, which play an important role in the

τ model.

4.4.2.4 Results for momentum as the treatment

Lastly, we explain the results for momentum as the treatment variable in Table 4.5.

To be precise, Ż = ṙ2m:12m, where the subscript denotes trailing 11-month returns

from the beginning of month t − 12 to the end of month t − 2, following the def-

inition of momentum characteristic. Note that r2m:12m is not ratio-based and thus

we cross-sectionally standardize the treatment variable. Again, in the top panel, we

present returns and alphas of long-short trading strategies where we always long 20%

of stocks with the highest value of treatment and short the 20% of stocks with the

lowest treatment. Thus, the top panel shows returns and alphas for winner-minus-

loser (WML) long-short strategy restricted to different subsets of the full universe. If

we take the prior that the momentum factor has positive average returns in general,

we should expect the WML strategy to have positive average returns and the fitted τ̂

to be mostly positive. However, the WML strategy applied to full universe in our test

period has a very small positive return of 0.16% and is far from being statistically

significant with a t-stats of 0.29. This finding shows that at least the equal-weighted

momentum strategy has not been working well for our test period. As expected,

the WML strategy for the full universe has a FF-5-MOM alpha of −0.03%, which

is very close to 0 and not significant. For all five τ̂ quintiles, the average returns

of the WML strategy increase monotonically from −0.61% in quintile 1 to 0.57% in

quintile 5. Similarly, the FF-5-MOM alpha increases from τ̂ quintile 1 to 5 monoton-
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ically. A WML strategy restricted to momentum responders identified in τ̂ quintile 5

generates an average return that is more than 3 times higher than WML on the full

universe (0.57% vs. 0.16%), though neither is statistically significant. Interestingly,

the WML strategy restricted to the τ̂ 1 quintile (the “momentum traps” quintile)

has significantly negative FF-5-MOM alpha, which means that shorting the WML

long-short strategy or a loser-minus-winner (LMW) strategy restricted to the “mo-

mentum traps” identified by our procedure would generate a significantly positive

alpha with respect to FF-5-MOM. Consistent with our previous results for value and

size, we find the long-short of long-short test remains positively significant and large

in magnitude: the average return is 1.18%, and the FF-5-MOM alpha is 1.65%.

For the second panel, we find that the signs of avg τ̂ and median τ̂ are mostly

consistent with the signs of FF-5-MOM alpha across different τ̂ quintiles except for

τ̂ quintile 4, where the FF-5-MOM alpha is positive, avg τ̂ is barely negative, and

median τ̂ is essentially 0. This finding is consistent with the cases in which value or

size is used as the treatment variable. For the third panel, we see that interestingly

the spread of treatment is smaller within the momentum traps (the τ̂ 1 quintile)

compared with the momentum responders (the τ̂ 5 quintile).

For the last panel, we found that average market size decreases monotonically from

momentum traps (τ̂ 1 quintile) to momentum responders (τ̂ 5 quintile). Although

for the momentum responders, momentum strategy does not perform well for our

test period in the sense that neither the average return nor the FF-5-MOM alpha is

significantly positive, it is the best performing momentum strategy relative to other

quintiles, and it also has the smallest average firm size.

4.4.2.5 Summary of results

We briefly summarize the results of our long-short of long-short test for the treatment

variables we tried: value, size, and momentum characteristics. Before reading any
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results, the priors on the sign of the three characteristics’ average effects are different:

for value and momentum, we expect the treatment effects on average to be positive,

and for size, we expect the effects to be negative on average. Therefore, for value and

momentum, the τ̂ quintile 5 is the characteristic-responder subset, whereas for size τ̂

as the treatment, the τ̂ 1 quintile consists of characteristic responders identified by

our HTE estimation procedure. Our test results in Tables 4.3, 4.4 and 4.5 show the

average returns of the long-short strategy restricted to characteristic responders are

larger than the average returns of the naive long-short strategy on the full universe in

all three cases of different treatment variables. For the long-short strategy restricted

on characteristic responders, except for momentum treatment case, we always have

statistically significant average returns and FF-5-MOM alphas. Those findings above

shows that when investing in P5-P1 strategies based on those factors/characteristics,

investors could focus on characteristic responders identified by our procedure to boost

their performance. P5-P1 long-short strategies applied to the τ̂ 5 quintile always

outperform long-short strategies restricted to the τ̂ 1 quintile, and the difference in

average returns are statistically significant in all three treatment cases, based on our

long-short of long-short test results. Moreover, the long-short of long-short strategies

always have significantly positive FF-5-MOM alphas, which suggests that the out-

performance of P5-P1 strategy between τ̂ 5 and τ̂ 1 quintile cannot be explained by

standard Fama French and momentum factors. The magnitudes are economically

significant too: the average returns of our long-short of long-short strategies range

from 0.77% to 1.54%, and the FF-5-MOM alphas of the long-short of long-short

strategies range from 0.98% to 1.80%, depending on the treatment variables.

Note that as mentioned before, in the long-short of long-short tests, we only test

our procedure’s ability to predict heterogeneity in treatment effects. Even if the

average of treatment effects is zero, as long as the effects are heterogeneous enough11,

11Recall that responders and traps identified by our procedure are defined as the two extreme τ̂
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we expect our R-learner procedure to produce significantly positive returns in the

long-short of long-short test. In particular, in our out-of-sample test period, the

simple P5-P1 long-short strategies applied to the entire universe all have average

returns that are statistically insignificant, according to the “full” column in Tables

4.3, 4.4, and 4.5, which suggests that the average treatment effects are non-existent

(0) or very small in magnitude. However, our long-short of long-short strategy has

positive average returns in all three cases, which suggests for the three treatment

variables we’ve tried: (1) treatment effects are heterogeneous in all three cases and

(2) our procedure successfully captures the heterogeneity and is accurate enough in

predicting treatment effects. On the other hand, it is possible that for some treatment

variable, the treatment effects are both homogeneous and very strong. In this case,

we would see that the naive long-short strategy applied on the full universe has

significantly positive average return, whereas our long-short of long-short test does

not have significantly positive average return. However, we didn’t find it to be true

in the data when size, value or momentum is used as the treatment variable.

From the second panel in Tables 4.3, 4.4, and 4.5, the signs of average τ̂ or median

τ̂ are largely consistent with the signs of long-short strategies’ average returns across

different τ̂ quintiles. In particular, the signs of average τ̂ are more consistent with

the signs of FF-5-MOM alphas of long-short strategies for different τ̂ quintiles. We

also find that, in general, within extreme quintiles (τ̂ 1 and τ̂ 5 quintiles), estimated

treatment effects τ̂ tend to be more heterogeneous than within the middle three τ̂

quintiles.

Average firm sizes across different τ̂ quintiles are quite consistent, using value

as the treatment variable, whereas with momentum as the treatment variable, firm

quintiles, τ̂ 1 and τ̂ 5 quintiles. Which one consists of characteristic traps depends on the prior on
the overall treatment effects. For example, for size as the treatment, we expect overall treatment
effect to be negative due to SMB factor documented by [40]. Then τ̂ 1 quintile consists of the
characteristic responders or “size responders”, because it has the smallest or most negative τ̂ ’s,
whereas τ̂ 5 quintile consists of size trap stocks
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size negatively correlates with τ̂ . Using size as the treatment, firm size positively

correlates with τ̂ . This correlation between size and τ̂ might result in characteristic

reponders or traps mainly consisting of tiny stocks, which could potentially affect the

practical implementation of long-short of long-short as an investment strategy for size

and momentum cases.

Lastly, we make one additional comment about our long-short of long-short tests.

Although we focus on the long-short of long-short strategies in this section, the av-

erage returns or alphas of our long-short of long-short strategy are never the loss

function or evaluation metric during our model training and cross-validation stage.

Our loss function used during the training of τ models is given by equation (4.13) and

cross-validation criterion (evaluation metric) is given by equation (4.19). The fact

that all of our long-short of long-short tests are significant even though it is never

directly used as the training target or evaluation metric shows the robustness of our

procedure and suggests that to some extent we capture the true heterogeneity of

treatment effects. On the other hand, machine learning calls for directly minimizing

the loss function we care about. Incorporating average returns or alphas of our long-

short of long-short strategies into loss function is difficult in our case, because our

long-short of long-short test relies on the τ̂ predicted by the fitted τ model, which is

unknown until the training finishes. However, if we are really interested in investing

in the long-short of long-short strategies and want to improve their performance as

much as possible, we could at least do cross validation based on the average returns

of long-short of long-short strategies in the validation set, which could potentially

boost the performance of the strategies. To be more conservative, we choose to not

to tune the models that way and stay with the most standard loss functions and

cross-validation evaluation metrics when implementing the R-learner.
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4.4.2.6 Subtleties on τ̂ vs. long-short strategy returns

To some extent, our long-short of long-short test checks whether τ̂ has successfully

differentiated stocks with different true τ ∗. We use average returns of long-short strat-

egy restricted to different τ̂ quintiles as approximations to some aggregate measure

of true τ ∗ for the different τ̂ quintiles. If the long-short of long-short strategy has

significantly positive returns, then we could conclude that stocks in the τ̂ 5 quintile

generally have higher τ ∗ than stocks in the τ̂ 1 quintile. As we discuss below, how-

ever, fixing one τ̂ quintile, several gaps exist between τ ∗ of stocks in a τ̂ quintile and

the returns of the long-short strategy restricted to that τ̂ quintile. Firstly, our mea-

sure of τ controls for a lot of firm characteristics listed in Table D.1 while long-short

strategy are just single-sort trading strategies based on treatment variable, which is

susceptible to confounders. Unfortunately there is no way we could control for that

many potential confounders at one time in the sorting portfolio approach.

Second, although our HTE estimation relaxes some standard assumptions, we still

assume that treatment affects returns linearly (assumption (4.5)). Similar to the com-

parison between the Fama-Macbeth regression approach and the sorting portfolio ap-

proach in asset pricing literature, long-short strategy returns are more non-parametric

for the relationship between treatment and returns. If the true relationship is non-

linear for some feature values of X, it is possible that τ ∗ for one quintile is quite

different from the long-short strategy returns restricted to that quintile.

Third, long-short returns could be viewed as differences in response variables,

whereas treatment effect τ ∗ is the change in response per unit change of treatment.

As we will see later in the results, it is possible that the ranges of treatment variables

are different for different τ̂ quintiles. For example, two different quintiles could have

exactly the same τ ∗ but very different long-short strategy average returns only because

one quintile has larger spread of treatment variable than the other.

Lastly, the fact that stocks inside one τ̂ quintile could have different τ ∗ further
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complicates the matter. As we see later in the empirical results, within one τ̂ quintile,

in general τ̂ is still quite heterogeneous, which suggests the true τ ∗’s are not homo-

geneous between stocks in that τ̂ quintile. This further obscures the connections

between τ ∗ and long-short strategies’ average returns. For example, if a P5-P1 long-

short strategy restricted to a quintile has close to 0 return, what should τ ∗ look like

for stocks in the quintile is not clear: they could have some stocks with very positive

τ ∗, some with very negative τ ∗ and the average τ ∗ for stocks with the quintile could

be positive, negative or close to 0. In our empirical results, we will be presenting

summary statistics of the cross-sectional distribution of τ̂ within each τ̂ quintile.

For the reasons above, we should not expect that some aggregate measure of τ̂

such as mean or median for different τ̂ quintiles to be good predictors for long-short

strategy returns restricted to different τ̂ quintiles, because even if τ̂(x) equals to

τ ∗(x) exactly for ∀x, the relationship between average or median τ ∗ for stocks in one

quintile and the long-short strategy returns within that quintile could be complicated.

Therefore, we do not test whether mean or median τ̂ within each τ̂ quintile has

predictive power for the P5-P1 long-short strategy restricted to each τ̂ quintile. Our

long-short of long-short tests are less ambitious: we expect the τ̂ 5 quintile to have

significantly higher long-short strategy returns than the τ̂ 1 quintile and we try to

test it in the data. In addition to the difference between two extreme τ̂ quintiles, we

also look at whether long-short average returns are roughly monotonically increasing

from τ̂ quintile 1 to 5. However, we do not conduct a rigorous statistical test on the

monotonicity.
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4.5 Interpreting Heterogeneous Treatment

Effects

4.5.1 Important Features for HTE

One advantage of our HTE approach together with the choice of gradient boosting

is that we could interpret our results in many different ways. We present some

analyses in this section. First, we show the most important features for our τ model.

Tree-based models, including gradient boosted trees, often have very intuitive ways

to calculate feature importance. The idea is that when the gradient boosting tree

algorithm decides on which variable to split, it chooses the variable with the largest

reduction in training loss. For each variable, we could sum up the training loss

reduction whenever the algorithm splits on this variable, and this total loss reduction

by each feature could be thought of as its feature importance. Usually we normalize

the sum of all feature importance values to be 1 such that the feature importance is in

relative terms. Calculating feature importance is built into most of gradient boosting

packages. We directly use feature importance function from xgboost in our analysis.

Because we have 13 rolling training windows of 10 years each12, we first calculate the

feature importance value described above for each feature and during each training

window. Then, for each feature, we average the feature importance values across all 13

training windows to get a final “average relative gain” for the feature. The average

relative gains for all features add up to 1 by construction. Average relative gains

shows–in an average training window–the percentage of total loss reduction achieved

could be attributed to each feature. We list the top 10 features based on this average

feature importance measure for τ̂ models when the treatment variable is value, size,

and momentum, in Tables 4.6, 4.7, and 4.8 respectively. Note that we could apply

12The first training window is from 199601 to 199512, and the last training window is from 200801
to 201712
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this analysis to m̂ and ê models as well, but since HTE are captured by the τ̂ model,

we focus on that here. We explain the results in the following subsections.

4.5.1.1 Value

We can see the sum of the top 10 features’ average relative gains add up to around

52%, which means the other features also contribute almost half to determining the

heterogeneity in treatment effects. To further understand how τ̂ depends on the top

three features on the list, we conduct the following analysis. Inspired by portfolio

sorting, at the end of month t, we calculate break points that sort stocks into five

quintiles based on feature X(1), break points of X(2) to sort stocks into five quintiles,

and break points of X(3) to sort stocks into two halves. Those break points will group

all stocks into 5 × 5 × 2 = 50 portfolios. We calculate the average of τ̂ for each of

the 50 portfolios at each month end, and then average again across all months for

the 50 portfolios. Essentially, we form unconditional sorts using X(1), X(2), and X(3)

and calculate the equal-weighted τ̂ of all portfolios. This way we could directly see

how τ model depends on the three most important features to a level that is not too

detailed but meaningful. We plot the results for case in which value is the treatment

in Figure 4.3.

We next interpret some of the findings in Figure 4.3. By looking at the most

important three covariates, it seems that the value responders are mainly the smaller

stocks (first two quintiles) with trailing 2-12 months returns in the middle range

(middle three quitiles) and past month’s return in the top half. Also note that this

plot only reflects contributions from the three most important features and that even

the top 10 features together only explain 50% of the heterogeneity in treatment effects.

Non-top-10 features help a great deal in defining the value traps and responders.
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Figure 4.3: τ̂ as a function for the most important 3 features based on feature impor-
tance of the τ models fitted in the rolling training windows (value as the treatment).
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4.5.1.2 Size

We can see that the sum of the top 10 features’ average relative gains add up to

around 69%, which is more top heavy compared with τ̂ with value as the treatment.

The fact that trailing returns, past month return and past 2-12 month return, are

the two most important features suggests that momentum and size have interesting

interactions.

We repeat the analysis of plotting τ̂ against quintiles of the most two important

features, separately for stocks whose third most important feature value is in the top

50% and bottom 50%. We show the results for size as the treatment in Figure 4.4.

4.5.1.3 Momentum

First, note that the sum of top 10 features’ average relative gain add up to around

68%, which is similar to the case where size is the treatment. Also note that size

is the most important feature for the heterogeneity effect when momentum is the

treatment, which is not surprising at all considering trailing returns are the two most

important features for cases in which size is the treatment. The total contribution

from the top three features is 46%, which is close to half and the highest among the

three treatment variable cases we study. We repeat the same plotting exercise as in

the previous section.

From Figure 4.5, we note a striking similarity of the findings with [59] on how

the momentum treatment effect varies with firm size. [59] study, in particular, how

the momentum long-short strategy’s profitability varies with firm size and the num-

ber of analysts covering the stocks, in order to test the idea of gradual information

spreading among investors. The data period in their study is 1980-1996 and for that

period momentum long-short strategy on the full universe works much better than

our period (0.53% in their paper vs. 0.16% in Table 4.5). By sorting all firms into 10
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Figure 4.4: τ̂ as a function for the most important 3 features based on feature impor-
tance of the τ models fitted in the rolling training windows (size as the treatment).

175



www.manaraa.com

deciles based on firm sizes and testing P3-P113 momentum long-short strategy within

each decile, they find the momentum long-short strategy performs the worst for the

smallest two size deciles and performs the best for the third smallest decile. The

strategy’s performance quickly decreases from the third to the largest decile. The

general patterns in Figure 4.5 is surprisingly similar to what [59] found: the first two

size deciles correspond to the first quintile in our case. The trends are mostly the

same though for some lines in the plot, the peak of profitability shows up in the third

instead of the second size quintile. This observation is a bit surprising because our

data periods overlap only slightly and the ways we form our momentum strategies are

different: [59] follows [60] and uses P3-P1 while our P5-P1 trading strategy is based

on momentum characteristic ret.2-12m, which follows Carhart’s definition in [26].

Similar to our discussions over the relationship between τ̂ and long-short strat-

egy returns, we note here that [59]’s findings are based only on long-short strategy

returns, whereas our predicted τ̂ plotted here are the treatment effect estimates con-

trolling for many other features in Table D.1 in a non-linear fashion (recall the e,

m models in equation (4.11 and our assumption from equation (4.1)). The portfolio

sorting approach cannot control for so many covariates at the same time while linear

regression can include more controls as additional regressors but it is susceptible to

misspecification of the linear functional forms. Our approach has an advantage in

that aspect.

Essentially, we confirm [59]’s empirical findings with more recent data and more

controls for potential confounders. Our procedure to arrive at this finding is com-

pletely automated without any priors regarding which feature is going to be important

and in what fashion. More importantly, in addition to confirming their findings, we

are able to provide new insights: the second most important feature is past return

13Different than our P5-P1, they sort into three portfolios based on trailing returns and long the
33% of stocks with the largest trailing returns and short the 33% of stocks with the worst trailing
returns.
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volatility “ret-sigma” and once we move past the smallest stocks, the momentum

strategy should work the best (or least poorly in our period) when ret-sigma are

among the highest quintile. Coming up with a theory for this observation is not

part of the main goals of this chapter, but we think that this could support the idea

of gradual information diffusion in [59] in that more volatile stocks probably have

more restricted information flow. [59] also find that controlling for size, momentum

strategy works better among stocks with low analyst coverage, and it is reasonable to

believe that low analyst coverage14 is often associated with high volatility. Lastly, we

note that, despite the similarity in trend, our predicted τ̂ are shifting into negative

regions, and most average τ̂ are negative here because momentum strategy applied

to the full universe performs much worse than the previous data period used in [59].

4.5.2 Impact of Top 3 Ex-post Important Features on HTE

In this subsection, we investigate the contributions of the three most important (ex-

post) features. We check whether our long-short of long-short strategies can still

provide alphas after controlling for simple interaction terms between treatment and

the top three ex-post features. Given that most of the time the patterns shown in

Figures like 4.3 are non-linear, we do not expect simple interactions to absorb our

results.

To some extent, our HTE model focuses on finding interactions between functions

of other features X and the treatment Z, as described in the term τ ∗(X)Z in equation

(4.1). It is natural to control for some simple interaction terms between some features

and the treatment variable to see whether our results of long-short of long-short tests

still hold. The way we conduct this test is to rerun the same tests, but instead of

calculating alphas with respect to standard Fama-French and momentum factors on

the right hand side, we also control for six more terms explained below. Denote

14We do not collect number of analyst coverage as a control in X.
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Figure 4.5: τ̂ as a function for the most important 3 features based on feature
importance of the τ models fitted in the rolling training windows (momentum as the
treatment).
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the most important feature according to average relative gain by X(1). At each

month end, we sort into five quintiles based on this feature X(1) instead of τ̂ . We

focus on the two X(1) quintiles with the highest and lowest X(1) and form a P5-P1

long-short trading strategy (based on treatment) within each extreme X(1) quintile

as we did before for each τ̂ quintile. We repeat this process at each month end

and therefore we have gotten two time series of long-short strategy restricted to

two extreme X(1) quintiles. Similarly, we calculate the same two time series for the

second and third most important features X(2) and X(3) to get four more time series

of long-short strategy returns. We include those six time series on the right hand side

to capture interaction effects between the three most important (ex-post) features

and our treatment characteristics. We rerun the alpha analyses for the long-short of

long-short tests by the regression equation below:

rls(τ̂(5)) (t)− rls(τ̂(1)) (t) =α+ β1 (Mkt (t)− rRF (t)) + β2SMBfull (t) + β3HMLfull (t)+

β4CMAfull (t) + β5RMWfull (t) + β6WMLfull (t)+

β7rls(X(1)(5)) (t) + β8rls(X(1)(1)) (t) + β9rls(X(2)(5)) (t)+

β10rls(X(2)(1)) (t) + β11rls(X(3)(5)) (t) + β12rls(X(3)(1)) (t) + ε (t)

(4.20)

, where we use rls(τ̂(5))(t) to denote returns of the P5-P1 long-short strategy formed

based on treatment restricted to τ̂ quintile 5 in month t. Similarly, rls(τ̂(1))(t) denotes

the long-short strategy formed based on the treatment but restricted to τ̂ quintile

1 in month t. The left hand side is therefore our long-short of long-short returns.

On the right hand side, we first have the FF-5 factors plus momentum. We use the

subscript “full” to denote that the standard factors are applied to the full universe.

rls(X(i)(j))(t) denotes the long-short strategy return restricted to X i quintile j during

month t, where i = 1, 2, 3 and j = 1, 5. We want to test whether α in equation (4.20)

is still significantly positive after adding the six additional controls. Recall that the
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siginificant FF-5-MOM alphas shown in Tables 4.3, 4.4, and 4.5 are obtained by the

following regression:

rls(τ̂(5)) (t)− rls(τ̂(1)) (t) = α+ β1Mkt (t) + β2SMBfull (t) + β3HMLfull (t)+

β4CMAfull (t) + β5RMWfull (t) + β6WMLfull (t) + ε (t) . (4.21)

This test looks at whether or not we can explain the α in the long-short of long-

short strategy by the simple long-short strategies formed on the extreme quintiles of

the most three important features, if we can look ahead and know the three ex-post

most important features. If the most three important features are highly correlated

with τ̂ in the sense that stocks in τ̂ quintile 5 and 1 have considerable overlap with

stocks in extreme quintiles by X(1), X(2), and X(3), then α in equation (4.20) is likely

to become insignificant. We present the results for the three treatment variables in

Table 4.9 below. According to Table 4.7, the top three features alone explain 40% of

the loss reductions achieved in training the τ model, which is more than 27% for the

value case.

We can see that extreme quintiles by the most important three features take away

some of the alpha from the long-short of long-short strategy, but for all three treat-

ment variables, long-short of long-short alphas remain positively significant. Note

that the size treatment experiences the greatest reduction in alphas.

4.6 Impact of Data Preprocessing

In this section, we conduct one robustness check to test the role of our cross-sectional

standardization denoted by the ˙ notation in equation (4.15). Feature standardization

or normalization is very popular in the machine learning community and is often

recommended before training. For our long-short of long-short tests, we are only con-

cerned about the cross-sectional relationship between stock returns and treatment
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variables. The time-series treatment effect of the treatments on future stock returns

can be different from how the treatments affect future returns in the cross section.

Therefore, the time series variations in the data could just add noise to our model

training, and we decide to take them away by cross-sectionally demeaning treatments,

controls, and stock returns if they are not ratio-based: we subtract from each vari-

able its cross-sectional mean in each month. As mentioned before, this cross-sectional

demeaning can be thought of as a preprocessing procedure corresponding to adding

time fixed effects in panel regression in linear models. To make the data from dif-

ferent period more comparable, for non-ratio based controls and treatment variables,

we further cross-sectionally standardize each variable so that every non-ratio based

variable has mean 0 and standard deviation 1 for each month. The ˙ operation leaves

ratio-based variables unchanged since they are already comparable across different

months.

Because we are only interested in cross-sectional relationships, we expect our pre-

processing to improve long-short of long-short test results. We show the effects of

preprocessing in this section by comparing the backtest results without any standard-

ization with our main results. In Tables 4.10, 4.11, and 4.12, we present long-short

of long-short results with raw data without any standardization for cases in which

value, size, and momentum are used as treatment variables, respectively.

We can see that all three tables have insignificant long-short of long-short average

returns and alphas, whereas all long-short of long-short returns and alphas are sig-

nificantly positive in Tables 4.3, 4.4, and 4.5. This finding shows our cross-sectional

standardization lets the model focus on cross-sectional relationship only and boost

the performance.
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4.7 Conclusions

In this work, we study heterogeneous effects of three well-known and standard firm

characteristics on future stock returns in the cross section, controlling for a large

number of potential confounders (features) at one time. We design a long-short of

long-short test to check whether our fitted models can predict heterogeneity in the

treatment characteristics’ effects, and the results are both statistically and econom-

ically significant. We provide interpretations and visualizations on what the models

have captured to explain the heterogeneity in the treatment effects.
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full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.25 -0.06 -0.16 0.26 0.18 0.71∗∗ 0.77∗∗

[0.99] [-0.14] [-0.65] [1.15] [0.77] [2.15] [2.17]
CAPM Alpha 0.29 -0.10 -0.14 0.31 0.27 0.80∗∗ 0.89∗∗∗

[1.13] [-0.25] [-0.54] [1.34] [1.16] [2.37] [2.63]
FF-3-MOM Alpha 0.49∗∗∗ 0.19 0.04 0.47∗∗∗ 0.40∗∗ 0.97∗∗∗ 0.78∗∗

[3.04] [0.63] [0.23] [2.88] [2.23] [3.42] [2.38]
FF-5-MOM Alpha 0.39∗∗ -0.13 -0.06 0.47∗∗∗ 0.35∗∗ 0.85∗∗∗ 0.98∗∗∗

[2.30] [-0.42] [-0.38] [3.02] [1.99] [2.84] [3.11]

τ 25% -0.08 -0.22 -0.08 -0.03 0.01 0.07
τ 50% -0.02 -0.14 -0.07 -0.02 0.02 0.11
τ 75% 0.03 -0.11 -0.05 -0.01 0.03 0.18
avg τ -0.02 -0.20 -0.07 -0.02 0.02 0.15
sd τ 0.17 0.19 0.01 0.01 0.01 0.14

avg Ż -0.69 -0.63 -0.69 -0.72 -0.71 -0.69

avg Ż in 1st quintile -1.98 -1.94 -1.89 -1.87 -1.89 -2.23

avg Ż in 5th quintile 0.38 0.46 0.27 0.25 0.30 0.54

avg Ż P5 - P1 2.36 2.40 2.15 2.11 2.19 2.77

number of stocks 3536.90 734.32 656.14 718.12 708.52 719.81
avg. BM ratio 0.84 1.17 0.69 0.66 0.68 0.97

avg. ME 5.08 3.88 5.11 5.38 4.39 6.52
avg. Monthly Vol 25.27 27.87 23.76 23.60 19.82 31.05

persistence 0.73 0.62 0.60 0.63 0.73

Table 4.3: Long-short of long-short test results for value as the treatment
using equal weighting We apply our R-learner procedure to cross-sectionally stan-
dardized data: all variables have mean 0 and standard deviation 1 during each month.
In the top panel, we calculate the average returns and alphas of P5-P1 long-short
trading strategies based on treatment variable book-to-market ratios but restricted
to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy and are
monthly in percentage. All portfolios in the P5-P1 long-short strategies are equal
weighted. t-stats with NW standard errors are inside square brackets. One, two and
three stars represent 10%, 5%, and 1% significance level respectively. The second
panel shows cross-sectional summary statistics for τ̂ . The third panel presents the
spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.15 −1.43∗∗ -0.04 0.31 0.12 0.11 1.54∗∗∗

[0.43] [-2.48] [-0.12] [1.29] [0.55] [0.45] [2.60]
CAPM Alpha 0.14 −1.66∗∗∗ -0.32 0.14 0.08 0.13 1.79∗∗∗

[0.40] [-2.80] [-1.11] [0.54] [0.36] [0.55] [2.91]
FF-3-MOM Alpha 0.03 −1.70∗∗∗ -0.39 0.06 -0.02 0.00 1.70∗∗∗

[0.11] [-3.03] [-1.36] [0.26] [-0.12] [-0.01] [2.94]
FF-5-MOM Alpha -0.24 −1.86∗∗∗ −0.49∗ -0.12 -0.21 -0.05 1.80∗∗∗

[-0.75] [-2.96] [-1.70] [-0.50] [-1.17] [-0.30] [2.85]

τ 25% -0.32 -0.79 -0.32 -0.16 -0.05 0.03
τ 50% -0.13 -0.60 -0.26 -0.13 -0.03 0.05
τ 75% -0.01 -0.47 -0.22 -0.10 -0.01 0.07
avg τ -0.21 -0.68 -0.27 -0.13 -0.03 0.06
sd τ 0.30 0.31 0.06 0.03 0.02 0.04

avg Ż 0.00 -0.88 -0.27 0.15 0.40 0.61

avg Ż in 1st quintile -1.35 -1.86 -1.30 -0.94 -0.69 -0.51

avg Ż in 5th quintile 1.43 0.31 0.89 1.33 1.58 1.79

avg Ż P5 - P1 2.78 2.17 2.19 2.26 2.28 2.30

number of stocks 3902.94 781.07 777.73 780.65 777.88 785.61
avg. BM ratio 0.77 1.09 0.79 0.69 0.63 0.63

avg. ME 4.74 0.60 1.81 4.44 6.24 10.51
avg. Monthly Vol 24.65 17.78 19.96 24.36 27.88 33.03

persistence 0.71 0.51 0.54 0.56 0.71

Table 4.4: Long-short of long-short test results for size as the treatment
using equal weighting. We apply our R-learner procedure to cross-sectionally
standardized data: all variables have mean 0 and standard deviation 1 during each
month. In the top panel, we calculate the average returns and alphas of P5-P1 long-
short trading strategies based on treatment variable firm sizes but restricted to each
τ̂ quintile. All return and alpha numbers are from P5-P1 strategy and are monthly
in percentage. All portfolios in the P5-P1 long-short strategies are equal weighted.
t-stats with NW standard errors are inside square brackets. One, two and three
stars represent 10%, 5%, and 1% significance level respectively. The second panel
shows cross-sectional summary statistics for τ̂ . The third panel presents the spread
of treatment variable in the cross section for all τ̂ quintiles and for the full universe.
The bottom panel shows some additional information about each quintile and the full
universe. We include number of stocks, book-to-market ratios, market equity (ME)
in billions of dollars, monthly trading volume in millions of shares, and persistence
defined as the average percentage of stocks that will remain in the same τ̂ quintile in
the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.16 -0.61 -0.08 0.03 0.36 0.57 1.18∗∗∗

[0.29] [-0.87] [-0.15] [0.06] [0.64] [1.08] [2.72]
CAPM Alpha 0.40 -0.29 0.18 0.22 0.58 0.80∗ 1.09∗∗

[0.90] [-0.51] [0.44] [0.50] [1.25] [1.72] [2.57]
FF-3-MOM Alpha 0.14 −0.66∗ -0.06 0.03 0.30 0.59∗ 1.25∗∗∗

[0.60] [-1.67] [-0.32] [0.13] [1.07] [1.76] [3.09]
FF-5-MOM Alpha -0.03 −1.12∗∗ -0.19 -0.02 0.26 0.53 1.65∗∗∗

[-0.12] [-2.48] [-0.90] [-0.07] [0.86] [1.43] [3.75]

τ 25% -0.05 -0.17 -0.05 -0.03 -0.01 0.01
τ 50% -0.02 -0.11 -0.04 -0.02 0.00 0.02
τ 75% 0.00 -0.08 -0.04 -0.02 0.00 0.03
avg τ -0.04 -0.14 -0.04 -0.02 -0.01 0.02
sd τ 0.08 0.10 0.01 0.00 0.00 0.03

avg Ż 0.00 -0.07 0.03 0.04 0.01 -0.07

avg Ż in 1st quintile -1.05 -1.01 -0.78 -0.89 -1.09 -1.24

avg Ż in 5th quintile 1.23 0.83 0.99 1.19 1.49 1.54

avg Ż P5 - P1 2.28 1.84 1.78 2.08 2.58 2.78

number of stocks 3681.14 739.86 706.92 754.83 708.25 771.28
avg. BM ratio 0.77 0.88 0.70 0.73 0.72 0.80

avg. ME 4.96 17.16 4.45 1.71 0.96 0.51
avg. Monthly Vol 25.54 52.31 29.17 18.26 16.42 11.74

persistence 0.85 0.72 0.66 0.61 0.73

Table 4.5: Long-short of long-short test results for momentum as the
treatment using equal weighting. We apply our R-learner procedure to cross-
sectionally standardized data: all variables have mean 0 and standard deviation 1
during each month. In the top panel, we calculate the average returns and alphas of
P5-P1 long-short trading strategies based on treatment variable trailing returns but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
all equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Feature Avg. Relative Gain
logME 0.11

ret.2 12m 0.09
ret.1m 0.07

ret sigma 0.06
CFP.FF 0.04
EP.FF 0.03
GrIA 0.03
txdi 0.03

turnover 0.03
OpIB 0.03

Total 0.52

Table 4.6: Top 10 features for the τ̂ model trained in rolling windows when
value is the treatment. Fix any feature, we calculate its feature importance for τ̂
model during each rolling training window and average them to get one single number
as average feature importance (Avg. Relative Gain). We rank all features by this
criteria and list the top 10 in the table along with the average feature importance.
We use the words “Avg.” and “Relative” in the column name to highlight that it
is averaged across different training windows and also the numbers are normalized
contributions to loss reduction by each feature

Feature Avg. Relative Gain
ret.1m 0.16

ret.2 12m 0.13
ret sigma 0.11

avg daily dVol million 0.08
dvc 0.05
xi 0.05
dp 0.03
BE 0.03
dlc 0.03
txdb 0.03

Total 0.69

Table 4.7: Top 10 features for the τ̂ model trained in rolling windows when
size is the treatment. Fix any feature, we calculate its feature importance for τ̂
model during each rolling training window and average them to get one single number
as average feature importance (Avg. Relative Gain). We rank all features by this
criteria and list the top 10 in the table along with the average feature importance. We
use the column name Avg. Relative to highlight that it is averaged across different
training windows and also the numbers are normalized contributions to loss reduction
by each feature
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Feature Avg. Relative Gain
00 logME 0.20
ret sigma 0.14
ret.1m 0.12
itcb 0.05
pstkl 0.04

avg daily dVol million 0.04
xi 0.03

OpIB 0.03
turnover 0.02

txp 0.02

Total 0.68

Table 4.8: Top 10 features for the τ̂ model trained in rolling windows when
momentum is the treatment. Fix any feature, we calculate its feature importance
for τ̂ model during each rolling training window and average them to get one single
number as average feature importance (Avg. Relative Gain). We rank all features by
this criteria and list the top 10 in the table along with the average feature importance.
We use the column name Avg. Relative to highlight that it is averaged across different
training windows and also the numbers are normalized contributions to loss reduction
by each feature

Treatment value size momentum
Avg. Return 0.82∗∗ 1.55∗∗∗ 1.19∗∗∗

[2.33] [2.62] [2.71]
CAPM Alpha 1.00∗∗∗ 0.60∗ 1.11∗∗

[3.18] [1.76] [2.13]
FF-3-MOM Alpha 1.02∗∗∗ 0.67∗∗ 1.24∗∗

[3.32] [2.01] [2.53]
FF-5-MOM Alpha 1.19∗∗∗ 0.65∗∗ 1.42∗∗∗

[3.97] [1.99] [3.03]

Table 4.9: Robustness checks for long-short of long-short tests using inter-
actions between most important features and the treatment variable. We
redo the time series regression to evaluate alphas with additional controls specified
in Equation (4.20). We only report long-short of long-short results here.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.25 0.48 0.15 -0.09 0.09 0.15 -0.32
[0.99] [1.20] [0.53] [-0.35] [0.48] [0.56] [-0.84]

CAPM Alpha 0.29 0.50 0.20 0.04 0.18 0.22 -0.29
[1.13] [1.28] [0.67] [0.14] [0.87] [0.78] [-0.75]

FF-3-MOM Alpha 0.49∗∗∗ 0.73∗∗ 0.38∗ 0.16 0.31∗∗ 0.35 -0.38
[3.04] [2.30] [1.68] [0.83] [2.19] [1.45] [-1.03]

FF-5-MOM Alpha 0.39∗∗ 0.44 0.19 0.05 0.30∗ 0.42∗ -0.02
[2.30] [1.41] [0.89] [0.24] [1.89] [1.73] [-0.05]

τ 25% 0.02 -0.07 0.02 0.04 0.05 0.07
τ 50% 0.04 -0.03 0.02 0.04 0.06 0.08
τ 75% 0.06 -0.01 0.03 0.05 0.06 0.10
avg τ 0.03 -0.05 0.02 0.04 0.06 0.09
sd τ 0.06 0.06 0.01 0.00 0.01 0.03

avg Ż -0.69 -0.61 -0.65 -0.69 -0.77 -0.71

avg Ż in 1st quintile -1.98 -2.00 -1.89 -1.84 -1.97 -2.06

avg Ż in 5th quintile 0.38 0.58 0.37 0.25 0.22 0.38

avg Ż P5 - P1 2.36 2.58 2.25 2.09 2.18 2.44

number of stocks 3536.90 707.85 705.98 697.96 714.12 710.99
avg. BM ratio 0.84 1.39 0.79 0.66 0.59 0.75

avg. ME 5.08 0.61 1.23 2.17 4.76 16.54
avg. Monthly Vol 25.27 18.37 13.74 12.50 18.70 62.67

persistence 0.75 0.57 0.56 0.63 0.79

Table 4.10: Long-short of long-short test results for value as the treatment
using equal weighting (without standardizing any variables). We apply our
R-learner procedure to raw data without any standardization. In the top panel, we
calculate the average returns and alphas of P5-P1 long-short trading strategies based
on treatment variable book-to-market ratios but restricted to each τ̂ quintile. All
return and alpha numbers are from P5-P1 strategy and are monthly in percentage.
All portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW
standard errors are inside square brackets. One, two and three stars represent 10%,
5%, and 1% significance level respectively. The second panel shows cross-sectional
summary statistics for τ̂ . The third panel presents the spread of treatment variable in
the cross section for all τ̂ quintiles and for the full universe. The bottom panel shows
some additional information about each quintile and the full universe. We include
number of stocks, book-to-market ratios, market equity (ME) in billions of dollars,
monthly trading volume in millions of shares, and persistence defined as the average
percentage of stocks that will remain in the same τ̂ quintile in the next month.

188



www.manaraa.com

Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.15 -0.45 0.91∗∗ 0.13 -0.06 0.02 0.47
[0.43] [-0.99] [2.37] [0.40] [-0.19] [0.04] [1.02]

CAPM Alpha 0.14 -0.59 0.82∗∗ 0.15 -0.07 0.04 0.63
[0.40] [-1.25] [2.14] [0.45] [-0.20] [0.08] [1.45]

FF-3-MOM Alpha 0.03 -0.66 0.73∗∗ 0.02 -0.13 -0.06 0.60
[0.11] [-1.46] [2.07] [0.07] [-0.37] [-0.13] [1.30]

FF-5-MOM Alpha -0.24 −0.97∗ 0.53 -0.33 -0.26 -0.29 0.68
[-0.75] [-1.86] [1.44] [-1.13] [-0.91] [-0.62] [1.41]

τ 25% -0.02 -0.06 -0.02 -0.01 -0.01 0.00
τ 50% -0.01 -0.04 -0.02 -0.01 -0.01 0.01
τ 75% 0.00 -0.03 -0.02 -0.01 0.00 0.02
avg τ -0.01 -0.05 -0.02 -0.01 0.00 0.01
sd τ 0.03 0.04 0.00 0.00 0.00 0.03

avg Ż 6.19 5.71 6.60 6.92 6.26 5.33

avg Ż in 1st quintile 3.37 3.01 3.96 4.19 3.75 3.09

avg Ż in 5th quintile 9.17 8.56 9.32 9.59 8.86 7.70

avg Ż P5 - P1 5.79 5.55 5.37 5.40 5.11 4.61

number of stocks 3902.94 820.86 696.05 831.87 821.85 788.46
avg. BM ratio 0.77 0.90 0.66 0.62 0.71 0.95

avg. ME 4.74 3.71 6.52 7.16 4.16 1.52
avg. Monthly Vol 24.65 33.55 29.37 24.06 18.99 16.91

persistence 0.48 0.38 0.45 0.49 0.63

Table 4.11: Long-short of long-short test results for size as the treatment
using equal weighting (without standardizing any variables). We apply our
R-learner procedure to raw data without any standardization. In the top panel,
we calculate the average returns and alphas of P5-P1 long-short trading strategies
based on treatment variable firm sizes but restricted to each τ̂ quintile. All return
and alpha numbers are from P5-P1 strategy and are monthly in percentage. All
portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW
standard errors are inside square brackets. One, two and three stars represent 10%,
5%, and 1% significance level respectively. The second panel shows cross-sectional
summary statistics for τ̂ . The third panel presents the spread of treatment variable in
the cross section for all τ̂ quintiles and for the full universe. The bottom panel shows
some additional information about each quintile and the full universe. We include
number of stocks, book-to-market ratios, market equity (ME) in billions of dollars,
monthly trading volume in millions of shares, and persistence defined as the average
percentage of stocks that will remain in the same τ̂ quintile in the next month.

189



www.manaraa.com

Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1

Mean 0.16 -0.19 0.12 0.18 0.48 0.34 0.53
[0.29] [-0.28] [0.29] [0.40] [1.00] [0.67] [1.15]

CAPM Alpha 0.40 0.11 0.26 0.39 0.69∗ 0.53 0.42
[0.90] [0.19] [0.68] [1.01] [1.67] [1.22] [0.95]

FF-3-MOM Alpha 0.14 -0.19 0.01 0.11 0.47∗ 0.37 0.56
[0.60] [-0.47] [0.05] [0.52] [1.83] [1.04] [1.32]

FF-5-MOM Alpha -0.03 -0.54 0.02 -0.03 0.35 0.15 0.68
[-0.12] [-1.16] [0.10] [-0.11] [1.27] [0.37] [1.44]

τ 25% 0.00 -0.01 0.00 0.00 0.01 0.01
τ 50% 0.00 -0.01 0.00 0.00 0.01 0.01
τ 75% 0.01 0.00 0.00 0.00 0.01 0.01
avg τ 0.00 -0.01 0.00 0.00 0.01 0.01
sd τ 0.01 0.02 0.00 0.00 0.00 0.01

avg Ż 0.09 0.04 0.11 0.13 0.11 0.08

avg Ż in 1st quintile -0.43 -0.50 -0.38 -0.40 -0.41 -0.41

avg Ż in 5th quintile 0.76 0.68 0.73 0.84 0.79 0.71

avg Ż P5 - P1 1.19 1.18 1.11 1.24 1.19 1.11

number of stocks 3681.14 738.85 732.83 736.24 736.35 736.87
avg. BM ratio 0.77 0.76 0.51 0.60 0.79 1.17

avg. ME 4.96 11.38 6.79 3.60 2.36 0.65
avg. Monthly Vol 25.54 44.62 33.22 23.68 17.81 8.36

persistence 0.73 0.67 0.65 0.68 0.80

Table 4.12: Long-short of long-short test results for momentum as the treat-
ment using equal weighting (without standardizing any variables). We
apply our R-learner procedure to raw data without any standardization. In the top
panel, we calculate the average returns and alphas of P5-P1 long-short trading strate-
gies based on treatment variable trailing returns but restricted to each τ̂ quintile. All
return and alpha numbers are from P5-P1 strategy and are monthly in percentage.
All portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW
standard errors are inside square brackets. One, two and three stars represent 10%,
5%, and 1% significance level respectively. The second panel shows cross-sectional
summary statistics for τ̂ . The third panel presents the spread of treatment variable in
the cross section for all τ̂ quintiles and for the full universe. The bottom panel shows
some additional information about each quintile and the full universe. We include
number of stocks, book-to-market ratios, market equity (ME) in billions of dollars,
monthly trading volume in millions of shares, and persistence defined as the average
percentage of stocks that will remain in the same τ̂ quintile in the next month.
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Appendix A

Appendix for Chapter 1

A.1 Calculation of Elevation Features

A standard measure for the degree of inclination in transportation is slope grade,

defined as Grade = || tanα||, where the angle α is as marked in Figure A.1.

Figure A.1: Slope Grade Illustration

We can calculate grade for route ij with the data from Google Maps. For route

ij, Google Maps allows us to retrieve the elevation at Nij + 1 roughly equal distance

points (including i and j) along the route, where Nij can be set by us. In other words,

the route ij is divided into Nij equal-distance segments. We set the maximum Nij

allowed by Google for each ij, and the length of a segment is around 25 meters for

all ij.

Let Lij be the set of segments for route ij.1 There are Nij segments in it: |Lij| =
Nij. We partition the set Lij into ascending segments and descending segments based

on whether the elevation is increasing or decreasing along each segment. We have

Lij = Lup
ij ∪ Ldown

ij . Gradel can be calculated for each segment l ∈ Lij using the

elevation at the starting and ending point of segment l, whose difference will give us

1Note both route and segment are directional.
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Δh in Figure A.1, and the length of each segment l ≈ d in the data. We compute

two elevation features for a route ij:

1) AvgAscendGradeij :=

∑
l∈L

up
ij

Gradel

|Lup
ij | : average grade among the ascending seg-

ments along route ij.

2) AscendPercentageij :=
|Lup

ij |
|Lij | : proportion of ascending segments on route ij.

Note that if we define similarly average descending grade and descend percentage

for route ij, then by definition we have

AvgAscendGradeij = AvgDescendGradeji,

and

DescendPercentageij = 1− AscendPercentageij.

So we only include AvgAscendGradeij and AscendPercentageij in the analysis. The

range of AvgAscendGradeij in London’s station network is between 0 and 0.04, which

is consistent with the anecdotal evidence that London is relatively flat and suitable

for biking in general.2

A.2 Implementation Details

We follow the model specified in Section 1.4.4 and use MPEC algorithm proposed in

[83]. Our optimization problem is: 3

min η′Wη

s.t. η = Z ′(δ −X l(X l′ZWZ ′X l)−1X l′ZWZ ′δ)

qIJ =
∑

{kl:IJ∈Ckl}
w′

klα
exp(δIJ +X

′nl
IJklγ)

exp(X ′
0klθ) +

∑
I′J ′∈Ckl

exp(δI′J ′ +X
′nl
I′J ′klγ)

∀IJ
(A.1)

2One could argue that since sharp downhill can also be challenging for biking, we should include
AvgAscendGradeji in the utility function for route ij. Since the maximum grade is 0.04, the descending slope
should not matter.

3We solve the same optimization problem for morning and evening rush hour separately
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The solver optimizes over x = [η′, δ′, γ′, θ′, α′]′. qIJ is the total trips observed on

route IJ in year 2014. Z is the instruments matrix including the exogenous covariates

and the additional instruments specified in (1.10) and (1.11). W is the weight matrix.

X l are the covariates that only depend on IJ . Xnl are the covariates that depend

on both IJ and kl. Note that in the actual implementation we do not have β from

(1.3) in x since we can easily solve for them β∗ = (X l′ZWZ ′X l)−1X l′ZWZ ′δ∗ using

δ∗ from the final optimal solution x∗. More details are given below:

We use MPEC algorithm proposed in [83]. Our optimization problem is:

min η′Wη

s.t. η = Z ′(δ −X l(X l′ZWZ ′X l)−1X l′ZWZ ′δ)

qIJ =
∑

{kl:IJ∈Ckl}
w′

klα
exp(δIJ +X

′nl
IJklγ)

exp(X ′
0klθ) +

∑
I′J ′∈Ckl

exp(δI′J ′ +X
′nl
I′J ′klγ)

(A.2)

We denote the long vector x as the vertical concatenation of all variables fed:

x = [η′, δ′, γ′, θ′, α′]′, which is the actual vector of variables fed in to the solver. qIJ

are the actual observed trip count on route IJ throughout 2014. Z is the instruments

matrix. W is the weighting matrix for different moment conditions. X l are the

covariates that only depend on IJ and correspond to linear parameters β. Xnl are

the covariates that depend on both IJ and kl and correspond to nonlinear parameters

γ. Note that in the actual implementation we do not have linear parameter β in x

since we can easily solve for them β∗ = (X l′ZWZ ′X l)−1X l′ZWZ ′δ∗ using δ∗ from

the final optimal solution x∗. Note that nonlinear parameters of interests, θ, α and

γ are in x and optimized by the solver.

We denote the total number of products as N , which is equal to the number

of unobserved characteristics ξ. We have N = 9784 for the evening rush hour and

N = 8764 for the morning rush hour in our block model. We choose ipopt as our

solver and use R package ipoptr, which is an R interface to ipopt solver. We code the

core parts of the calculation-mainly the evaluation of quadratic objective function, N
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nonlinear constraint and their analytic Jacobian and Hessian matrices in C++ with

the help of Rcpp package blending cpp code into R. Note that a full dense Hessian

matrix alone would have dimensions close to 104 × 104, and we use a sparse matrix

implementation, which reduces the numbers we need to calculate down to around

2 ∗ 106. The same sparse implementation is applied to Jacobian matrices of objective

function and all constraints. We can also see the effectiveness of our block model in

reducing the computation burden and memory requirement. If we were to solve the

problem using routes between stations instead of routes between station blocks, we

would have a Hessian matrix 1000 times bigger than the one in the block model. We

use the default convergence tolerance in ipopt. In our implementation, we manage

to solve the problem using 45G memory on a standard Linux server. The algorithm

normally converges in three to seven days. We use solution from a pure Logit model

plus uniformly random perturbation as the starting point for x0, and we start multiple

jobs (more than 20) for different random initial values at the same time. Some jobs

converge to a local infeasible point but the final x∗ are all identical, which suggests

that local minimum is not an issue in our estimation.

A.3 Robustness Checks for Reduced-Form

Regressions

We present here the estimation results for different specifications of the reduced-

form regressions. We try different breakpoints in route distance, i.e. the b in term

max{log d(i, j)− log b, 0}. We use 1.4km and 1.6km for b, and the results are similar

to the main results where b = 1.5km. We also modify R and D values for our

instruments in Equations (1.10) and (1.11). The reduced form results are also robust

to those perturbations, which suggests that our proposed instruments are robust to

the choice of b, R, and D.
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A.3.1 Robustness checks for different breakpoints in route

distance

We present the results for different breakpoints in route distance in Tables A.1 and

A.2.

breakpoint (km) 1.4 1.4 1.5 1.5 1.6 1.6

OLS IV OLS IV OLS IV

O. Bike Avail. 0.05 0.66 0.05 0.69 0.05 0.76
% (0.03) (0.19) (0.03) (0.21) (0.03) (0.19)

D. Dock Avail. 0.50 1.75 0.50 1.47 0.50 1.35
% (0.03) (0.20) (0.04) (0.16) (0.04) (0.15)

Dist. 1 0.12 0.12 0.12 0.10 0.08 0.08
In log km (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Dist. 2 -0.41 -0.40 -0.37 -0.36 -0.33 -0.32

In log km (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

R2 0.20 - 0.20 - 0.20 -
Cragg-Donald Statistic - 83.65 - 83.64 - 83.64

Table A.1: Reduced-form regressions with different distance breakpoints for morning
rush hour

breakpoint (km) 1.4 1.4 1.5 1.5 1.6 1.6

OLS IV OLS IV OLS IV

O. Bike Avail. 0.12 1.76 0.13 1.57 0.11 1.67
% (0.02) (0.15) (0.03) (0.17) (0.02) (0.15)

D. Dock Avail. -0.45 2.28 -0.46 1.87 -0.45 1.77
% (0.02) (0.13) (0.03) (0.15) (0.02) (0.13)

Dist. 1 0.18 0.20 0.14 0.16 0.12 0.14
In log km (0.02) (0.02) (0.03) (0.04) (0.02) (0.02)
Dist. 2 -0.46 -0.39 -0.42 -0.36 -0.41 -0.31

In log km (0.02) (0.02) (0.03) (0.04) (0.02) (0.02)

R2 0.33 - 0.33 - 0.33 -
Cragg-Donald Statistic - 99.38 - 99.37 - 99.37

Table A.2: Reduced-form regressions with different distance breakpoints for evening
rush hour

206



www.manaraa.com

A.3.2 Robustness checks for different instrumental variable

specifications

We present the results in Tables A.3 and A.4. Note that the OLS results also change

when we modify R because Zij depend on R. We can see that in all specifications,

1) both bike and dock availability coefficients are significantly positive, and 2) IV

regressions significantly increase the bike and dock availability coefficients from the

OLS case, which is similar to the base case presented in the main text for R =

600, 800, 1000m and D = 7000m.

Radius R (km) 0.6, 0.8, 1 0.5, 0.7, 0.9 0.5, 0.7, 0.9

Threshold D (km) 6.5 6.5 6.5 6.5 7.0 7.0

OLS IV OLS IV OLS IV

O. Bike Avail. 0.01 1.08 0.05 0.71 0.05 0.87
% (0.03) (0.16) (0.03) (0.16) (0.03) (0.18)

D. Dock Avail. 0.49 1.60 0.50 1.28 0.50 1.24
% (0.03) (0.14) (0.03) (0.13) (0.03) (0.14)

Dist. 1 0.12 0.10 0.13 0.12 0.13 0.09
In log km (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Dist. 2 -0.37 -0.36 -0.38 -0.37 -0.38 -0.37

>1.5km, in log km (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

R2 0.20 - 0.20 - 0.20 -
Cragg-Donald Statistic - 98 - 101 - 88

Table A.3: Robustness checks for morning rush hour reduced-form regressions
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Radius R (km) 0.6, 0.8, 1 0.5, 0.7, 0.9 0.5, 0.7, 0.9

Threshold D (km) 6.5 6.5 6.5 6.5 7.0 7.0

OLS IV OLS IV OLS IV

O. Bike Avail. 0.11 1.57 0.10 1.51 0.10 1.36
% (0.02) (0.17) (0.02) (0.12) (0.02) (0.11)

D. Dock Avail. -0.56 1.87 -0.52 1.68 -0.52 2.00
% (0.02) (0.15) (0.02) (0.10) (0.02) (0.10)

Dist. 1 0.14 0.16 0.13 0.14 0.13 0.13
In log km (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)
Dist. 2 -0.42 -0.36 -0.43 -0.39 -0.43 -0.41

>1.5km, in log km (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)

R2 0.33 - 0.33 - 0.33 -
Cragg-Donald Statistic - 91 - 107 - 108

Table A.4: Robustness checks for evening rush hour reduced-form regressions

A.4 Robustness Checks for Structural Estimation

A.4.1 Structural Estimation Results Without Elevation

Features

We present in Tables A.5 and A.6 the estimation results for the structural model

without the two elevation features: average ascending grade and percentage of as-

cending segments. The results do not change much and our qualitative conclusions

still hold.

A.4.2 Structural estimation results without elevation

features and walking distance

We present in Tables A.7 and A.8 the estimation results for the structural model

without walking distance.
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Non-linear para. Linear para.

O. Pop. Density 0.020 Intercept -7.658
(Ppl per hec) (0.015) (0.876)

D. Pop. Density -0.040 S. Station Count 0.896
(0.018) (In log) (0.055)

O. Google Plc. 0.020 E. Station Count 0.753
(Num per 4 hec) (0.017) (0.031)
D. Google Plc. 0.301 S. Bike Avail. 1.653

(0.170) (%) (0.260)
O. Walking Dist. -3.376 E. Dock Avail. 1.738

(1km) (0.791) (0.206)
D. Walking Dist. -0.963 Route Dist. 1 1.588

(0.495) (In log) (0.267)
O.D. Driving Dist. 0.255 Route Dist. 2 -2.919

(1km) (0.053) (>1.5km, in log) (0.361)
O.D. Transit Dist. 0.040

(1km) (0.057)

Pseudo-R2 0.667

Table A.5: Demand estimates: morning rush hour without elevation features

A.4.3 Structural estimation without elevation and outside

option features

Next, we present structural estimation results without outside option features for

customers who want to travel from O to D, in Tables A.9 and A.10.

A.5 Improving Availability for Morning Rush

Hour
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Non-linear para. Linear para.

O. Pop. Density -0.045 Intercept -4.218
(Ppl per hec) (0.004) (0.487)

D. Pop. Density 0.006 S. Station Count 0.911
(0.007) (In log) (0.024)

O. Google Plc. 0.181 E. Station Count 0.913
(Num per 4 hec) (0.024) (0.052)
D. Google Plc. 0.035 S. Bike Avail. 0.877

(0.011) (%) (0.186)
O. Walking Dist. -2.058 E. Dock Avail. 0.831

(1km) (0.286) (0.282)
D. Walking Dist. -4.589 Route Dist. 1 2.044

(0.687) (In log) (0.201)
O.D. Driving Dist. 0.141 Route Dist. 2 -4.013

(1km) (0.031) (>1.5km, in log) (0.268)
O.D. Transit Dist. 0.079

(1km) (0.033)

Pseudo-R2 0.791

Table A.6: Demand estimates: evening rush hour without elevation features

We present the results in Figures A.2 and A.3 the predicted percentage system

usage increase during the morning rush hour after increasing the bike and dock avail-

ability by 0.05, respectively.

A.6 Summary Statistics of Data

We have collected several data sets with very rich and diverse features related to the

travel demand across the city. We show more aspects of the raw data in this section

and present more summary statistics during our exploratory analysis.

A.6.1 Plot of Coverage Area

We plot the station locations in Figure A.4 on the map of the Greater London ad-

ministrative area, with its 33 boroughs. It shows that the bike share system covers
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Figure A.2: Predicted morning rush hour usage increase after improving bike avail-
ability by 0.05

Figure A.3: Predicted morning rush hour usage increase after improving dock avail-
ability by 0.05

211



www.manaraa.com

Nonlinear para. Linear para.

O. Pop. Density 0.017 Intercept -10.524
(Ppl per hec) (0.015) (0.655)

D. Pop. Density -0.040 S. Station Count 0.778
(0.019) (In log) (0.025)

O. Google Plc. 0.027 E. Station Count 0.745
(Num per 4 hec) (0.019) (0.030)
D. Google Plc. 0.304 S. Bike Avail. 1.607

(0.177) (%) (0.259)
O. Walking Dist. NA E. Dock Avail. 1.758

(1km) (0.198)
D. Walking Dist. NA Route Dist. 1 1.303

(In log) (0.280)
O.D. Driving Dist. 0.165 Route Dist. 2 -2.374

(1km) (0.076) (>1.5km, in log) (0.398)
O.D. Transit Dist. 0.201

(1km) (0.088)

Pseudo-R2 0.664

Table A.7: Demand estimates: morning rush hour without elevation and walking
distance

only the central boroughs of the city.

A.6.2 Google Places Data

1. Details of the Google Place Categories that we use

Based on the Google place data scraped in Feb 2017, we have, in total, 97 types.

We group them into ten categories in our analysis and list them below:

Food This category has the following six types: food, meal delivery, meal

takeaway, restaurant, cafe and bakery

Religion This category has the following five types: church, Mosque, syna-

gogue, place of worship, and Hindu temple
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Nonlinear Para. Linear Para.

O. Pop. Density -0.042 Intercept -9.022
(Ppl per hec) (0.004) (0.387)

D. Pop. Density 0.006 S. Station Count 0.916
(0.007) (In log) (0.024)

O. Google Plc. 0.192 E. Station Count 0.923
(Num per 4 hec) (0.034) (0.054)
D. Google Plc. 0.035 S. Bike Avail. 0.887

(0.007) (%) (0.209)
O. Walking Dist. NA E. Dock Avail. 0.840

(1km) (0.272)
D. Walking Dist. NA Route Dist. 1 1.964

(In log) (0.201)
O.D. Driving Dist. 0.121 Route Dist. 2 -3.981

(1km) (0.035) (>1.5km, in log) (0.265)
O.D. Transit Dist. 0.080

(1km) (0.043)

Pseudo-R2 0.787

Table A.8: Demand estimates: evening rush hour without elevation and walking
distance

Health This category has the following eight types: dentist, doctor, health,

gym, hospital, pharmacy, physiotherapist and spa

Entertainment This category has the following 14 types: amusement park,

aquarium, art gallery, bar, bowling alley, movie rental, movie theatre, museum,

night club, painter, park, rv park, casino and zoo

Stores This category has the following 17 types: clothing store, convenience

store, department store, furniture store, hardware store, home goods store,

jewelry store, liquor store, pet store, shoe store, shopping mall, store, book

store, electronics store, bicycle store, grocery or supermarket, and florist

Finance This category has three types: accounting, bank and finance
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Nonlinear para. Linear para.

O. Pop. Density 0.020 Intercept -9.653
(Ppl per hec) (0.084) (0.911)

D. Pop. Density -0.046 S. Station Count 0.789
(0.123) (In log) (0.073)

O. Google Plc. 0.022 E. Station Count 0.780
(Num per 4 hec) (0.112) (0.053)
D. Google Plc. 0.299 S. Bike Avail. 1.583

(0.104) (%) (0.163)
O. Walking Dist. -3.128 E. Dock Avail. 1.683

(1km) (0.416) (0.117)
D. Walking Dist. -0.280 Route Dist. 1 1.553

(0.135) (In log) (0.361)
O.D. Driving Dist. NA Route Dist. 2 -2.549

(1km) (>1.5km, in log) (0.374)
O.D. Transit Dist. NA

(1km)

Pseudo-R2 0.667

Table A.9: Demand estimates: morning rush hour without elevation and outside
option features

Government and Offices This category has the following 12 types: city

hall, embassy, courthouse, lawyer, local government office, real estate agency,

travel agency, insurance agency, moving company.

We tried to include commercial types from Google places in This category, but

it turns out that Google places data do not have a clean office building or

commercial type. This is the best we can do and, as presented in the data

section, all the groups are highly correlated with each other, suggesting that

we have captured where people work in our analysis by using all of the group

types, whether using them separately or just using the total place count.

Education This category has the following three types: library, school and

university
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Nonlinear Para. Linear Para.

O. Pop. Density -0.048 Intercept -5.316
(Ppl per hec) (0.018) (0.444)

D. Pop. Density 0.002 S. Station Count 1.030
(0.024) (In log) (0.031)

O. Google Plc. 0.187 E. Station Count 1.320
(Num per 4 hec) (0.051) (0.047)
D. Google Plc. 0.039 S. Bike Avail. 0.911

(0.047) (%) (0.584)
O. Walking Dist. -1.923 E. Dock Avail. 0.935

(1km) (0.506) (0.385)
D. Walking Dist. -4.909 Route Dist. 1 2.162

(0.537) (In log) (0.214)
O.D. Driving Dist. NA Route Dist. 2 -4.774

(1km) (>1.5km, in log) (0.218)
O.D. Transit Dist. NA

(1km)

Pseudo-R2 0.790

Table A.10: Demand estimates: evening rush hour without elevation and outside
option features

Other transportation This category has the following four types: bus sta-

tion, subway station, train station, transit station. We use this type to try

to capture in the structural model the average substitution or complementary

effect.

Others This category has the following 27 types: airport, ATM, beauty salon,

campground, car dealer, car rental, car repair, car wash, cemetery, electrician,

establishment, fire station, funeral home, gas station, general contractor, hair

care, laundry, locksmith, lodging, parking, plumber, police, post office, roof

contractor, stadium, storage and veterinary care.

2. Counts by categories

We lay out 200m by 200m squares uniformly on the coverage area and count
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Figure A.4: Greater London and Bike Stations

how many Google Places of each category there are in each square. Table A.11

shows the summary statistics of Google place counts.

mean sd min 25% median 75% max

Total Count 30 51 0 4 12 33 799
Food 4 8 0 0 1 5 100

Religion 0 1 0 0 0 0 8
Health 5 17 0 0 1 5 641

Entertainment 2 4 0 0 1 3 66
Store 5 13 0 0 1 5 280

Finance 3 8 0 0 0 2 108
Gov Offices 3 15 0 0 0 2 680
Education 1 1 0 0 0 1 18

Transportation 1 2 0 0 1 2 11
Others 6 9 0 1 3 8 193

Table A.11: Summary for Google Places within Uniform 200m by 200m Squares
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3. Correlation of Google Places counts

Total Food Reli. Heal. Enter. Store Fin. Gov. Edu. Trans. Others

Total Count 1.00 0.72 0.28 0.60 0.68 0.72 0.69 0.55 0.23 0.36 0.80
Food 0.72 1.00 0.24 0.24 0.76 0.58 0.45 0.20 0.16 0.38 0.64

Religion 0.28 0.24 1.00 0.09 0.21 0.15 0.21 0.14 0.21 0.15 0.27
Health 0.60 0.24 0.09 1.00 0.21 0.22 0.28 0.13 0.13 0.12 0.34

Entertainment 0.68 0.76 0.21 0.21 1.00 0.55 0.53 0.21 0.14 0.29 0.58
Store 0.72 0.58 0.15 0.22 0.55 1.00 0.46 0.19 0.12 0.25 0.57

Finance 0.69 0.45 0.21 0.28 0.53 0.46 1.00 0.27 0.11 0.26 0.63
Gov Offices 0.55 0.20 0.14 0.13 0.21 0.19 0.27 1.00 0.08 0.12 0.29
Education 0.23 0.16 0.21 0.13 0.14 0.12 0.11 0.08 1.00 0.11 0.23

Transportation 0.36 0.38 0.15 0.12 0.29 0.25 0.26 0.12 0.11 1.00 0.32
Others 0.80 0.64 0.27 0.34 0.58 0.57 0.63 0.29 0.23 0.32 1.00

Table A.12: Correlation Matrix for Google Places including Total Place Counts

Table A.12 shows how correlated the counts are across different categories. We

can see that in general the correlation is pretty high.

A.6.3 Census Data

We present in Tables A.13 and A.14 the summary statistics of population density for

both the 430 covered LSOAs and all 4835 LSOAs from the Census data.

We can see from the Area rows that the LSOAs in the coverage areas are generally

smaller than the average LSOA. In terms of population density, the LSOAs in the

coverage area are denser than the average LSOA. But comparing the Max columns,

we see that, currently, the station network does miss some extremely dense LSOAs,

which implie that there would likely be substantial demand increase if the system

were expanded.

A.6.4 Route-level Usage

Route level usage and distance statistics are presented in Table A.15 and Table A.16.
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Covered LSOAs units Mean sd Min 25% median 75% Max

all ages num 1702 330 985 1480 1664 1892 3081
working ages num 1294 289 608 1083 1250 1482 2400

Area Hectare(104m2) 17 19 4 9 12 18 192
All Ages Den num/104m2 143 67 6 98 139 182 399

Working Age Den num/104m2 108 50 5 74 105 139 295

Table A.13: Census Data Summary For 430 Covered LSOAs

All LSOAs units Mean sd Min 25% median 75% Max

all ages num 1691 264 985 1530 1654 1817 4933
working ages num 1167 229 608 1010 1128 1281 4235

Area Hectare(104m2) 33 63 2 13 20 32 1580
All Ages Den num/104m2 96 61 1 52 83 128 685

Working Age Den num/104m2 68 46 1 34 57 92 440

Table A.14: Census Data Summary For All 4835 LSOAs

All Routes Mean sd Min 25% median 75% Max

Route Trip Counts 17 61 0 0 2 12 6707
Route Distance (m) 5403 3052 27 3057 4934 7274 16338

Table A.15: Route Level Usage and Distance Distribution For All Routes

Mean sd Min 25% median 75% Max

Trip counts by route 27 76 1 2 7 25 6707
Route distance (m) 5403 3052 27 2341 3620 5130 15998

Table A.16: Route Level Usage and Distance Distribution for Routes with Positive
Usage
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Appendix B

Appendix for Chapter 2

B.1 Additional Simulation Results

Similar to the simulation results shown in Chapter 2, the results of this section is

preliminary. We show more thorough simulation results in this section under various

settings. We vary the true intercept β0 from −10, −12 to −14 and the true standard

deviation of ξ, σξ from 0.5, 1.0 to 1.5. The most difficult estimation problem is the

case where β0 = −14 and σξ = 1.5. We can see that in that setting, although no

method is perfect but our two-stage weighting estimator outperforms other estimators

overall. We didn’t vary the number of markets T and number of products per market.

They are kept at T = 25 and Jt = 50, t = 1, 2, ..., T . First stage setup is exactly the

same as specified in Chapter 2.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=26.6% (2017) Bound Estimator Weighting Estimator

β0 -10 -9.276 -9.302 -9.884 -10.081
(0.010) (0.009) (0.032) (0.008)

β̄1 1 0.830 0.890 0.982 0.982
(0.003) (0.002) (0.007) (0.003)

β̄2 1 0.895 0.885 0.967 0.988
(0.003) (0.002) (0.010) (0.003)

β̄3 1 0.900 0.891 0.964 0.989
(0.003) (0.002) (0.011) (0.003)

β̄4 1 0.896 0.884 0.957 0.996
(0.003) (0.002) (0.011) (0.003)

β̄5 1 0.896 0.884 0.981 0.994
(0.003) (0.002) (0.011) (0.003)

λ1 0.5 0.670 0.451 0.482 0.530
(0.005) (0.002) (0.009) (0.004)

λ2 0.5 0.492 0.446 0.459 0.496
(0.005) (0.005) (0.017) (0.004)

λ3 0.5 0.492 0.454 0.446 0.505
(0.005) (0.005) (0.017) (0.004)

λ4 0.5 0.491 0.458 0.460 0.487
(0.004) (0.004) (0.016) (0.004)

λ5 0.5 0.486 0.449 0.479 0.492
(0.005) (0.005) (0.019) (0.004)

Table B.1: Simulation Results from 1000 Runs for β0 = −10 and σξ = 0.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=30.0% (2017) Bound Estimator Weighting Estimator

β0 -10 -8.921 -9.063 -9.628 -10.188
(0.014) (0.011) (0.043) (0.015)

β̄1 1 0.778 0.859 0.939 0.926
(0.003) (0.002) (0.010) (0.005)

β̄2 1 0.841 0.843 0.936 0.971
(0.005) (0.004) (0.017) (0.005)

β̄3 1 0.845 0.842 0.935 0.969
(0.004) (0.004) (0.017) (0.005)

β̄4 1 0.839 0.840 0.898 0.977
(0.004) (0.004) (0.018) (0.005)

β̄5 1 0.846 0.851 0.951 0.990
(0.004) (0.004) (0.016) (0.005)

λ1 0.5 0.666 0.399 0.419 0.570
(0.008) (0.005) (0.012) (0.007)

λ2 0.5 0.471 0.413 0.400 0.490
(0.007) (0.007) (0.023) (0.007)

λ3 0.5 0.490 0.407 0.411 0.509
(0.007) (0.009) (0.026) (0.006)

λ4 0.5 0.476 0.416 0.386 0.480
(0.008) (0.008) (0.026) (0.007)

λ5 0.5 0.475 0.421 0.437 0.490
(0.007) (0.007) (0.025) (0.007)

Table B.2: Simulation Results from 1000 Runs for β0 = −10 and σξ = 1.0. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=32.8% (2017) Bound Estimator Weighting Estimator

β0 -10 -8.447 -8.712 -9.105 -10.390
(0.019) (0.015) (0.038) (0.020)

β̄1 1 0.722 0.807 0.856 0.859
(0.004) (0.003) (0.009) (0.009)

β̄2 1 0.773 0.784 0.797 0.952
(0.006) (0.005) (0.022) (0.008)

β̄3 1 0.773 0.781 0.822 0.947
(0.006) (0.006) (0.023) (0.007)

β̄4 1 0.764 0.775 0.834 0.953
(0.006) (0.006) (0.020) (0.007)

β̄5 1 0.777 0.791 0.838 0.973
(0.007) (0.006) (0.020) (0.007)

λ1 0.5 0.633 0.341 0.338 0.594
(0.010) (0.006) (0.012) (0.012)

λ2 0.5 0.450 0.351 0.335 0.493
(0.011) (0.012) (0.027) (0.012)

λ3 0.5 0.471 0.347 0.329 0.509
(0.010) (0.013) (0.029) (0.010)

λ4 0.5 0.455 0.353 0.333 0.473
(0.011) (0.012) (0.029) (0.010)

λ5 0.5 0.462 0.362 0.366 0.494
(0.010) (0.010) (0.028) (0.010)

Table B.3: Simulation Results from 1000 Runs for β0 = −10 and σξ = 1.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=41.8% (2017) Bound Estimator Weighting Estimator

β0 -12 -10.538 -10.848 -11.600 -11.980
(0.019) (0.012) (0.041) (0.012)

β̄1 1 0.522 0.856 0.954 0.933
(0.009) (0.003) (0.011) (0.006)

β̄2 1 0.858 0.847 0.938 0.980
(0.003) (0.003) (0.012) (0.003)

β̄3 1 0.865 0.849 0.947 0.980
(0.003) (0.003) (0.011) (0.003)

β̄4 1 0.857 0.844 0.925 0.996
(0.004) (0.003) (0.011) (0.003)

β̄5 1 0.861 0.849 0.941 1.000
(0.004) (0.003) (0.011) (0.003)

λ1 0.5 0.791 0.430 0.463 0.550
(0.010) (0.003) (0.008) (0.006)

λ2 0.5 0.472 0.433 0.417 0.494
(0.007) (0.006) (0.019) (0.005)

λ3 0.5 0.468 0.433 0.413 0.499
(0.007) (0.005) (0.020) (0.005)

λ4 0.5 0.467 0.439 0.435 0.467
(0.007) (0.005) (0.021) (0.005)

λ5 0.5 0.474 0.433 0.428 0.484
(0.006) (0.006) (0.020) (0.004)

Table B.4: Simulation Results from 1000 Runs for β0 = −12 and σξ = 0.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=42.8% (2017) Bound Estimator Weighting Estimator

β0 -12 -10.128 -10.561 -11.283 -12.019
(0.023) (0.016) (0.045) (0.017)

β̄1 1 0.495 0.841 0.949 0.881
(0.011) (0.005) (0.012) (0.009)

β̄2 1 0.799 0.805 0.885 0.963
(0.005) (0.004) (0.017) (0.005)

β̄3 1 0.804 0.802 0.875 0.956
(0.005) (0.005) (0.017) (0.005)

β̄4 1 0.795 0.797 0.851 0.976
(0.005) (0.005) (0.013) (0.005)

β̄5 1 0.805 0.813 0.866 0.993
(0.005) (0.004) (0.016) (0.004)

λ1 0.5 0.754 0.377 0.377 0.561
(0.012) (0.005) (0.012) (0.009)

λ2 0.5 0.455 0.406 0.383 0.497
(0.010) (0.008) (0.024) (0.007)

λ3 0.5 0.466 0.391 0.374 0.509
(0.007) (0.010) (0.024) (0.006)

λ4 0.5 0.450 0.401 0.391 0.462
(0.011) (0.008) (0.023) (0.008)

λ5 0.5 0.442 0.404 0.425 0.478
(0.009) (0.007) (0.025) (0.007)

Table B.5: Simulation Results from 1000 Runs for β0 = −12 and σξ = 1.0. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=44.6% (2017) Bound Estimator Weighting Estimator

β0 -12 -9.567 -10.161 -10.627 -12.132
(0.026) (0.018) (0.042) (0.025)

β̄1 1 0.463 0.807 0.880 0.810
(0.011) (0.005) (0.011) (0.013)

β̄2 1 0.728 0.745 0.780 0.950
(0.007) (0.005) (0.020) (0.008)

β̄3 1 0.724 0.743 0.785 0.930
(0.006) (0.005) (0.020) (0.006)

β̄4 1 0.714 0.735 0.767 0.963
(0.007) (0.006) (0.022) (0.007)

β̄5 1 0.731 0.758 0.781 0.986
(0.007) (0.006) (0.020) (0.007)

λ1 0.5 0.710 0.312 0.276 0.594
(0.014) (0.006) (0.013) (0.012)

λ2 0.5 0.425 0.347 0.313 0.493
(0.014) (0.012) (0.029) (0.010)

λ3 0.5 0.437 0.333 0.347 0.509
(0.012) (0.014) (0.027) (0.009)

λ4 0.5 0.426 0.348 0.341 0.446
(0.014) (0.013) (0.026) (0.014)

λ5 0.5 0.415 0.352 0.290 0.472
(0.011) (0.012) (0.026) (0.009)

Table B.6: Simulation Results from 1000 Runs for β0 = −12 and σξ = 1.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=59.1% (2017) Bound Estimator Weighting Estimator

β0 -14 -11.618 -12.154 -13.244 -13.925
(0.035) (0.021) (0.047) (0.019)

β̄1 1 0.158 0.820 0.951 0.867
(0.027) (0.007) (0.013) (0.014)

β̄2 1 0.828 0.793 0.899 0.989
(0.006) (0.004) (0.011) (0.004)

β̄3 1 0.826 0.792 0.904 0.980
(0.005) (0.004) (0.011) (0.004)

β̄4 1 0.825 0.787 0.892 1.025
(0.005) (0.003) (0.012) (0.004)

β̄5 1 0.826 0.791 0.904 1.031
(0.005) (0.004) (0.012) (0.004)

λ1 0.5 0.829 0.397 0.430 0.574
(0.017) (0.004) (0.007) (0.009)

λ2 0.5 0.474 0.413 0.427 0.490
(0.009) (0.007) (0.021) (0.005)

λ3 0.5 0.472 0.427 0.426 0.502
(0.010) (0.007) (0.017) (0.006)

λ4 0.5 0.481 0.421 0.388 0.458
(0.009) (0.007) (0.021) (0.006)

λ5 0.5 0.466 0.417 0.425 0.463
(0.009) (0.007) (0.017) (0.006)

Table B.7: Simulation Results from 1000 Runs for β0 = −14 and σξ = 0.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=59.4% (2017) Bound Estimator Weighting Estimator

β0 -14 -11.044 -11.795 -12.750 -13.902
(0.038) (0.024) (0.067) (0.026)

β̄1 1 0.119 0.814 0.951 0.830
(0.026) (0.008) (0.018) (0.018)

β̄2 1 0.759 0.744 0.809 0.961
(0.007) (0.006) (0.014) (0.005)

β̄3 1 0.763 0.748 0.820 0.956
(0.007) (0.005) (0.015) (0.006)

β̄4 1 0.755 0.739 0.801 1.000
(0.007) (0.006) (0.016) (0.006)

β̄5 1 0.762 0.754 0.829 1.031
(0.007) (0.006) (0.020) (0.006)

λ1 0.5 0.804 0.346 0.345 0.570
(0.017) (0.005) (0.013) (0.011)

λ2 0.5 0.444 0.387 0.382 0.494
(0.012) (0.011) (0.025) (0.008)

λ3 0.5 0.450 0.369 0.358 0.509
(0.012) (0.012) (0.024) (0.008)

λ4 0.5 0.446 0.383 0.410 0.442
(0.013) (0.011) (0.024) (0.010)

λ5 0.5 0.431 0.392 0.350 0.456
(0.010) (0.009) (0.024) (0.008)

Table B.8: Simulation Results from 1000 Runs for β0 = −14 and σξ = 1.0. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Avg % zeros True BLP Gandhi et al. Two-stage Two-stage

=61.2% (2017) Bound Estimator Weighting Estimator

β0 -14 -10.437 -11.325 -11.912 -13.979
(0.039) (0.029) (0.060) (0.034)

β̄1 1 0.150 0.790 0.892 0.812
(0.026) (0.009) (0.015) (0.025)

β̄2 1 0.681 0.684 0.726 0.946
(0.008) (0.007) (0.017) (0.008)

β̄3 1 0.685 0.688 0.690 0.938
(0.007) (0.006) (0.018) (0.009)

β̄4 1 0.670 0.677 0.714 0.984
(0.007) (0.007) (0.021) (0.008)

β̄5 1 0.686 0.692 0.713 1.022
(0.008) (0.007) (0.021) (0.007)

λ1 0.5 0.730 0.281 0.237 0.564
(0.019) (0.007) (0.013) (0.016)

λ2 0.5 0.402 0.344 0.376 0.475
(0.017) (0.014) (0.027) (0.013)

λ3 0.5 0.420 0.329 0.330 0.512
(0.016) (0.015) (0.025) (0.011)

λ4 0.5 0.397 0.333 0.340 0.413
(0.016) (0.013) (0.028) (0.014)

λ5 0.5 0.414 0.353 0.330 0.464
(0.014) (0.013) (0.025) (0.012)

Table B.9: Simulation Results from 1000 Runs for β0 = −14 and σξ = 1.5. The utility

function of customers are specified by Uijt = β0 +
∑5

m=1 βimX
(m)
jt + ξjt + εijt where the

slope is given by β0 and does not have random coefficient part. We have five product
features. All 5 βim’s are distributed as N (1, 0.5), i.e., true values of β̄i = 1, i = 1, 2, ..., 5
and true values of standard deviation λi = 0.5, i = 1, 2, ..., 5. We have T = 25 markets
and Jt = 50 products per market. ξ is generated by normal distribution with mean 0 and
standard deviation σξ). The parameters we need to estimate and care about is β0 and
β̄i, λi, i = 1, 2, ..., 5. We apply different estimators and compare their results against the
true values that generated the simulated data. We simulate 1000 data sets and average the
parameter estimates for all estimators across 1000 runs. Standard errors in the parenthesis
are calculated from the 1000 simulation runs. From left to right, we show true values,
estimates of BLP, bound estimator from [51], our two-stage bound estimator and two-stage
weighting estimator, respectively. We also show the average percentage of 0-sale products
from 1000 runs in the first cell of the table to show how severe the long-tail pattern is in
the simulation setting. For the simulated standard normal variables used in the estimation
of our random coefficient model, we directly use the true values that generated the data
since simulation error is not the focus of this study.
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Appendix C

Appendix for Chapter 3

C.1 Filtering of Option Data

We apply some filtering rules when computing implied roughness to avoid using ques-

tionable data from illiquid options. We largely follow the rules in [91], which are quite

standard in the empirical literature on options. We require the following features:

• Underlying stock volume for that day > 0;

• Underlying stock price for that day > $5;

• Implied volatility of the option ≥ 3% and ≤ 200%;

• The option’s open interest > 0;

• The option’s volume can be 0 but has to be non-missing;

• The option has time to maturity τ ≥ 5 and τ ≤ 365 calendar days.

In addition, when estimating non-parametrically the ATM skew for each time-to-

maturity τ , we set the minimal number of implied volatilities needed to measure the

ATM skew for a particular time-to-maturity (for a particular stock on a particular

day) at four.

When running a regression of the ATM skew term structure to estimate an implied

H, we use the following filtering rules: The minimal number of ATM skews along the

dimension of time-to-maturity (for a particular stock on a particular day) is three,
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meaning that there must be at least three points in the regression

log φ(τ) = c+ (H − 1/2) log τ + ε.

For each day, we apply these filters to call and put options separately. If for a

stock, both calls and puts pass the filtering rules on a given day, we use the average

implied roughness (Hcall+Hput)/2 as the implied measure on that day; otherwise we

use whichever type of option passes, and if neither passes the filters, we mark the

value as NA for that stock on that day.

When forming monthly portfolios, we need to aggregate daily implied roughness

measures into a monthly measure. We include a stock only if it has more than 15

non-NA daily implied roughness estimates for that month. (This is similar to what

is used by [7].) Otherwise, we mark the implied measure for that stock and month

as NA. These restrictions define our implied universe of stock-month pairs.

In estimating daily realized variance σ̂2
d in Section 3.2.1, we use trade data only

and we apply the data cleaning steps in [12].
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Appendix D

Appendix for Chapter 4

D.1 Feature List

We list all features used in Table D.1. For most features involving balance sheet

items from Compustat such as BM.FF and EP.FF in Table D.1, we exactly follow

the convention in [40]: we require certain delay when aligning Compustat data and

CRSP data to make sure that the 10-K data are available to the investors when we

feed them into R-learner procedure. This is more conservative and a relaxation should

only improve our results.

In the residualization step specified in Equation (4.15), we control the potential

confounders by subtracting m(x) and e(x) from response and treatment. Predicting

returns are very hard. m(x) model usually cannot do a good job and thus most

of the variations in response, or cross-sectionally standardized next month returns,

are left in the residuals. However, it is different for the e(x) model. If it happens

that our controls can predict the treatment too well so that Ż − ê(Ẋ) have little

variation left, then it might become hard for the R-learner to detect any meaningful

effect. For example, if we include feature “AME.FF” and “ABE.m” in the controls

when book-to-market ratio is the treatment, the residualized treatment Ż− ê(Ẋ) has

very small variance and very close to 0. We try to remove such covariates whenever

we see that e(x) model does too good of a job predicting treatment Ż to a point

the root-mean-squared-error (RMSE) loss falls below 0.05. To provide a reference to

that number, since we cross-sectionally standardize treatment to have mean 0 and
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standard deviation 1 for each month, if we just use 0 for prediction we will achieve a

RMSE loss of 1. We mark those exclusions of features for different treatment cases

in Table D.2.

Features Description
ME′ Market equity
ret sigma Past month daily return volatility
ret.1m Past month return
turnover∗ Stock turnover defined as volume-to-market-cap ratio during past month
avg daily dVol million′ Average daily dollar volume during the past month
avg daily Vol thousand′ Average daily volume during the past month
BE Book Equity based on Fama-French definition
OpProf Operating profits
GrProf Gross profits
Cflow Free cash flow
AstChg∗ Percentage change of total asset from the previous 10K
BM.FF∗ Book-to-market ratio based on Fama French definition
OpIB∗ Operating profit to book equity ratio
GrIA∗ Gross profit to total asset ratio
EP.FF∗ Earning-to-price ratio based on Fama French definition
DP.likeFF∗ Dividend yield based on Fama French definition
AME.FF∗ Asset divided by market equity based on Fama French definition
ABE.m∗ Asset divided by book equity.
CFP.FF∗ Cashflow divided by market equity based on Fama French definition
at′ Total asset
pstkl′ Preferred stock liquidating value
txdi Income taxes - deferred
txdb Deferred taxes
itcb Investment tax credit
revt′ Total revenue
xint Interests expense
xi Extraordinary items (in the income statement)
dvc′ Dividend for common/ordinary equity (Cash Flow items)
act′ Total current assets
che Cash and short-term investments
dlc Total debt in current liabilities
txp Income taxes payable
dp Depreciation and amortization
invt′ Total inventories
ni Net income
FFIC Fama-French industry categories based on French’s website

Table D.1: Feature list. We list here all features collected for our empirical exercise.
One feature from the list is selected to be the treatment variable and the rest is
used as controls. Features with a ∗ after their names are ratio-based which are
not standardized. The rest features are standardized cross-sectionally before feeding
into our R-learner procedure. We take log of some non-ratio-based features before
standardization to make the distribution more like normal distribution. We mark
those features by ′. Values of 0 would become NA after log transformation.
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Treatment Variable Controls excluded

value AME.FF
ABE.m

size NULL
momentum NULL

Table D.2: Features excluded for certain treatments. We document here in this table
if we ever exclude any features from full feature list (Table D.1) due to e model
is fitted too well. The criterion we use is when best cross-validation loss from our
hyperparameter grid search gives a CV loss under 0.05 for e model.

D.2 Detailed Portfolio Sorting Results for Each τ̂

Quintile

In this appendix subsection, we list the detailed single sort results on treatment

variable restricted to each of the five τ̂ quintiles. We show the results for value, size

and momentum as treatment variable in Table D.3, D.4 and D.5, respectively.

D.3 Restricted τ Model on Top-3 Ex-post

Features

In this subsection, we repeat our R-learner procedure but restrict ourselves to only

the top-3 most important features (ex-post) for the τ model. Recall that there is still

significant portion of the HTE is explained by the rest of features that are probably

less commonly studied. In fact, the non-top-3 features combined explain the majority

of HTE (73% for value, 60% for size and 54% for momentum). Thus we expect that

performance of our long-short of long-short tests should take a hit if if we only use

the ex-post top 3 features in our τ model. We emphasize that even if the top-3

features can explain all the performance, our procedure still has merits since the top

3 important features are not known beforehand and only identified by our R-learner

in the rolling windows.
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From the result of section 4.5.2, our procedure has a lot more to offer than a

simple interaction of expost most important features and treatment variables. We

are then interested in exploring whether our heterogeneity results are mainly driven

by the top-3 features if we control the top-3 features in a complicated non-linear

fashion instead of using simple interactions. To implement this idea, we rerun our

entire procedure but force training of τ model to only use the top-3 ex-post important

features. We emphasise again that the purpose of this study is to understand what

drives the results and the result is not achievable in practice since the top-3 features

are computed using all rolling windows and thus are available only ex-post.

D.3.0.1 Value as the Treatment

We can see that the results change a lot by comparing with Table 4.3. In particular,

our long-short of long-short test result is much weaker and in fact is not significantly

positive anymore. This shows that for value as treatment, the non top-3 features really

contribute a lot and if we only use the top-3 features, the predictive power actually

is completely lost. This is somewhat expected since the top-3 features together only

explain 27% of the loss reduction achieved by τ model according to Table 4.6.

D.3.0.2 Size as the Treatment

Again, we compare the results in Table D.7 and Table 4.4. We can see that by only

including the top-3 features, the predictive power of long-short of long-short test

still holds: the average returns and alphas are positive and statistically significant.

However, the magnitude of average return and alphas decrease a bit. So do the t-stats

of average return and alphas. For example, the FF-5-MOM alpha decrease by around

20% from 1.80% per month to 1.47% per month. It is interesting to note that the size

responders, τ̂ 1 quintile in this case since we want the quintile with the most negative

τ̂ ’s, have average τ̂ of -0.56 compared with -0.68 before. The difference in average τ̂
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between τ̂ 5 and τ̂ 1 quintile decrease from 0.74 in Table 4.4 to 0.57 in Table D.7.

That is roughly a 20% decrease again. This shows that the model’s ability to capture

heterogeneity decreases due to the loss of non-top-3 features and that it is reflected

in the τ̂ ’s.

D.3.0.3 Momentum as the Treatment

We compare the results in Table D.8 and Table 4.5. Surprisingly the long-short of

long-short tests have a much higher average return 1.57% compared with 1.18% per

month before when using all features. The average return also have a much higher

t-stats 4.30 too. For FF-5-MOM alpha, we do see similar results as before. When

restricting τ model to the top-3 expost features, we have a FF-5-MOM alpha of

1.69% per month compared with 1.65% per month on all features. We do see slightly

more statistical significance of the FF-5-MOM alpha now with compared 4.15 with

3.75 before. By focusing on the top-3 features, it seems that we are able to achieve

essentially the same alpha with a higher t-stats. That seems to suggests that the

results in Table 4.5 are mainly driven by top 3 features and the rest features will add

noise to the model for our long-short of long-short test of momentum as treatment.

That might not be too surprising considering the fact that the top 3 features alone

explain 46% of loss reduction achieved by τ model, which is almost 50% and is the

most comparing with cases where value and size are used as treatment.

D.4 Restricted τ Model on Top-10 Ex-post

Features

We repeat the analysis in section D.3 but instead of restricting training of τ model

to the top 3 ex-post most important features, we include the top 10. We show the
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results for value, size and momentum as treatment variable in Table D.9, D.10 and

D.11, respectively.

D.5 Results with Only Demeaning Variables in

the Cross Section

In our main results from section 4.4, we standardize all non-ratio-based variables in

the cross section in each month so that all non-ratio-based variables have 0 mean and

standard deviation 1 for each month. In section 4.6, we apply R-learner procedure

to raw data without any standardization to show the impact of our pre-processing

procedure. In this subsection of the appendix, we present results with something

in between: we only demean all non-ratio-based variables (including returns since

returns are non-ratio-based) in the cross section such that all variables have 0 mean

during each month. As in our main results, ratio-based variables are unchanged

during the pre-processing. We show the results for value, size and momentum as

treatment variables in Tables D.12, D.13, and D.14, respectively.

D.6 Value Weighted Results for Long-short of

Long-short Tests

We repeat the analysis in section 4.4.2 but instead of reporting results with all equal-

weighted portfolios, we show results with all value-weighted portfolios in our long-

short of long-short tests. This should alleviate the concerns on overweighting small

stocks in trading strategies. However, as discussed before, our procedure assigns

equal weights to all data points during training and we should expect a performance

decrease if the testing distribution is different from the training one. The decrease in

performance should be particularly large in our case since we are utilizing highly flex-
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ible machine learning algorithm gradient boosting, which tries to exploit all sorts of

relationships in the training data. We show the results for value, size and momentum

as treatment variables in Table D.15, D.16 and D.17, respectively.

D.7 Training vs. Test Results for Long-short of

Long-short Tests

In the last section of the appendix, we present the “in-sample” average returns of our

long-short of long-short strategies, compared with our main results which is conducted

in a predictive fashion without look-ahead bias. Tables D.18, D.19, and D.20 show the

results with value, size, and momentum as the treatment variable, respectively. Each

of the three tables have three different long-short of long-short results: “training”,

“test oneshot”, and “test rolling”. For “training”, we calculate the average returns

of P5-P1 long-short trading strategies restricted to each τ̂ quintile, for the period of

the first rolling window for training (199601-200512) before our out-of-sample test

period starts. The τ̂ quintiles used in forming long-short of long-short strategies are

determined by one single τ model fitted using data in the same time window (199601-

200512). Since we form the five τ̂ quintiles in the 10-year window used in the training

of the τ model, we consider this as an in-sample test for our long-short of long-short

strategies. For “test oneshot”, we keep the one single τ model trained from the first

rolling window 199601-200512 and repeat the same calculation for our entire out-of-

sample test period 200601-201812. This is an out-of-sample test because we backtest

the strategies in the test period 200601-201812 while the τ models determining τ̂

quintiles are fitted using periods that are non-overlapping (199601-200512). This

“oneshot” out-of-sample test is unrealistic and unlikely to work well because it only

fits the model once with data before year 1996. For “test rolling”, we repeat the

calculations using the same method as in our main results: the average returns of
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long-short of long-short strategies are calculated for our out-of-sample test period

200601-201812 with annual refittings using the previous 10 years as training data.

For each year in the test period, τ̂ quintiles are determined by a τ model trained

using the 10-year rolling window before that year. In total we train 13 τ models since

we have 13 10-year rolling windows. All return numbers are monthly in percentage.

All portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW

standard errors are inside square brackets. One, two and three stars represent 10%,

5%, and 1% significance level respectively.

We can see that across all three treatment variables, average returns of our long-

short of long-short strategies in training set have much better performance than our

main results, “test rolling”, which is expected since training results are in-sample and

not implementable in practice. One interesting observation is that the gaps between

our in-sample and out-of-sample results are huge: for value as the treatment variable,

the average return of the long-short of long-short strategy is 1.72% in “training” vs.

0.77% in “test rolling”; for size as the treatment, the return is 4.35% for the “training”

and 1.54% for the “test rolling”, whereas for momentum as the treatment, 5.15% for

“ training” and 1.18% for “test rolling”. The large gap suggests that there might

be some overfitting in our model training and a more careful hyperparameter tuning

for controlling overfitting might shrink the gap between in-sample and out-of-sample

rolling results and improve out-of-sample performance even more.

Lastly, we note that for all three teatment varibles, “test oneshot” does not per-

form well in that the average returns of long-short of long-short strategies are smaller

than “test rolling” and not significantly positive. This confirms our intuition that

the financial market evolves over time and it is hard for models trained using data

from 199601 to 200512 to generalize well into the next 20 years. Our yearly refitting

helps a lot in performance, which is obvious from comparing “test oneshot” with “test

rolling”.
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Ż 1 Ż 2 Ż 3 Ż 4 Ż 5 P5 − P1
Panel 1 Mean 1.26∗ 1.18∗ 1.03∗ 0.97 1.20 -0.06

τ̂ 1 [1.95] [1.78] [1.69] [1.47] [1.53] [-0.14]
CAPM Alpha 0.26 0.21 0.07 0.04 0.17 -0.10

[0.76] [0.57] [0.23] [0.10] [0.38] [-0.25]
FF-3-MOM Alpha 0.35 0.36 0.32 0.35 0.54∗ 0.19

[1.36] [1.34] [1.62] [1.33] [1.73] [0.63]
FF-5-MOM Alpha 0.76∗∗∗ 0.62∗∗ 0.53∗∗∗ 0.47∗ 0.63∗ -0.13

[2.75] [2.20] [2.64] [1.71] [1.88] [-0.42]

avg Ż -1.94 -0.98 -0.53 -0.15 0.46
avg. BM ratio 0.27 0.58 0.89 1.25 2.85

avg. ME 6.47 4.56 3.92 2.69 1.75
avg. Monthly Vol 33.01 26.70 26.46 27.43 25.74

persistence 0.33 0.35 0.34 0.33 0.30

Panel 2 Mean 0.99∗∗ 0.78∗ 0.82∗ 0.75∗ 0.82∗ -0.16
τ̂ 2 [2.16] [1.73] [1.84] [1.70] [1.73] [-0.65]

CAPM Alpha 0.17 -0.04 0.01 -0.03 0.03 -0.14
[0.95] [-0.33] [0.03] [-0.17] [0.16] [-0.54]

FF-3-MOM Alpha 0.19 0.03 0.12 0.13 0.22 0.04
[1.58] [0.30] [1.21] [1.35] [1.59] [0.23]

FF-5-MOM Alpha 0.34∗∗∗ 0.12 0.15 0.17∗ 0.28∗ -0.06
[3.18] [1.13] [1.52] [1.73] [1.92] [-0.38]

avg Ż -1.89 -1.01 -0.59 -0.24 0.27
avg. BM ratio 0.19 0.39 0.59 0.81 1.46

avg. ME 8.72 6.82 4.57 3.12 2.34
avg. Monthly Vol 32.12 26.86 23.75 17.66 18.39

persistence 0.42 0.43 0.43 0.42 0.44

Panel 3 Mean 0.60 0.66 0.72∗ 0.80∗ 0.86∗ 0.26
τ̂ 3 [1.40] [1.61] [1.67] [1.91] [1.86] [1.15]

CAPM Alpha -0.20 -0.11 -0.07 0.06 0.11 0.31
[-1.31] [-0.78] [-0.47] [0.30] [0.50] [1.34]

FF-3-MOM Alpha −0.19∗ -0.06 0.05 0.21∗ 0.28∗ 0.47∗∗∗

[-1.93] [-0.56] [0.53] [1.85] [1.74] [2.88]
FF-5-MOM Alpha −0.16∗ -0.07 0.06 0.19∗ 0.32∗∗ 0.47∗∗∗

[-1.65] [-0.73] [0.66] [1.80] [2.08] [3.02]

avg Ż -1.87 -1.06 -0.64 -0.28 0.25
avg. BM ratio 0.18 0.37 0.56 0.79 1.41

avg. ME 9.32 7.46 5.02 3.02 2.09
avg. Monthly Vol 31.09 28.20 21.07 16.39 21.25

persistence 0.43 0.44 0.45 0.45 0.47

Panel 4 Mean 0.57 0.55 0.58 0.54 0.75 0.18
τ̂ 4 [1.25] [1.19] [1.29] [1.30] [1.58] [0.77]

CAPM Alpha -0.25 -0.27 -0.22 -0.19 0.02 0.27
[-1.44] [-1.62] [-1.31] [-1.16] [0.08] [1.16]

FF-3-MOM Alpha −0.22∗∗ −0.20∗ -0.11 -0.08 0.18 0.40∗∗

[-2.09] [-1.88] [-0.88] [-0.64] [0.99] [2.23]
FF-5-MOM Alpha -0.14 -0.14 -0.07 -0.08 0.21 0.35∗∗

[-1.36] [-1.30] [-0.60] [-0.62] [1.23] [1.99]

avg Ż -1.89 -1.05 -0.63 -0.26 0.30
avg. BM ratio 0.19 0.38 0.57 0.81 1.47

avg. ME 7.67 5.80 3.47 2.74 2.27
avg. Monthly Vol 26.38 23.81 18.04 14.17 16.70

persistence 0.41 0.41 0.42 0.42 0.44

Panel 5 Mean -0.27 0.22 0.31 0.37 0.45 0.71∗∗

τ̂ 5 [-0.46] [0.41] [0.63] [0.76] [0.75] [2.15]
CAPM Alpha −1.18∗∗∗ −0.68∗∗ −0.50∗∗ −0.40∗ -0.38 0.80∗∗

[-3.83] [-2.44] [-2.09] [-1.80] [-1.09] [2.37]
FF-3-MOM Alpha −1.14∗∗∗ −0.63∗∗∗ −0.41∗∗ -0.28 -0.17 0.97∗∗∗

[-4.95] [-3.21] [-2.27] [-1.44] [-0.54] [3.42]
FF-5-MOM Alpha −0.91∗∗∗ −0.50∗∗∗ −0.32∗ -0.20 -0.06 0.85∗∗∗

[-4.31] [-2.71] [-1.67] [-1.08] [-0.19] [2.84]

avg Ż -2.23 -1.10 -0.56 -0.12 0.54
avg. BM ratio 0.17 0.43 0.71 1.09 2.46

avg. ME 8.74 9.84 6.61 5.17 2.25
avg. Monthly Vol 33.83 38.44 31.94 23.77 27.26

persistence 0.28 0.35 0.35 0.34 0.29

Table D.3: Detailed long-short test results restricted to different τ̂ quintiles for value as the
treatment. We calculate average equal weighted returns of portfolios sorted based on treatment
but restricted to each τ quintile. We also report alpha and additional information about each
portfolio. Return and alpha numbers are monthly in percentage. Inside square brackets are t-stats
with Newey-West standard errors. One, two and three stars represent significance level 10%, 5%,
and 1% respectively.
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Ż 1 Ż 2 Ż 3 Ż 4 Ż 5 P5 − P1
Panel 1 Mean 2.01∗∗ -0.18 -0.18 0.01 0.58 −1.43∗∗

τ̂ 1 [2.41] [-0.27] [-0.26] [0.01] [0.89] [-2.48]
CAPM Alpha 1.15∗ −1.05∗∗ −1.13∗∗∗ −1.04∗∗∗ -0.51 −1.66∗∗∗

[1.75] [-2.24] [-2.69] [-3.09] [-1.58] [-2.80]
FF-3-MOM Alpha 1.37∗∗ −0.96∗∗ −0.99∗∗∗ −0.82∗∗∗ -0.33 −1.70∗∗∗

[2.48] [-2.36] [-2.82] [-3.44] [-1.42] [-3.03]
FF-5-MOM Alpha 1.76∗∗∗ -0.62 −0.71∗∗ −0.63∗∗∗ -0.10 −1.86∗∗∗

[2.84] [-1.42] [-1.97] [-2.58] [-0.49] [-2.96]

avg Ż -1.86 -1.35 -0.97 -0.52 0.31
avg. BM ratio 2.20 1.17 0.92 0.68 0.48

avg. ME 0.01 0.03 0.07 0.20 2.67
avg. Monthly Vol 3.20 4.10 5.71 11.02 64.87

persistence 0.20 0.36 0.45 0.52 0.55

Panel 2 Mean 0.72 0.86∗ 0.52 0.65 0.69 -0.04
τ̂ 2 [1.45] [1.67] [0.91] [1.16] [1.28] [-0.12]

CAPM Alpha 0.07 0.06 -0.41 -0.33 -0.25 -0.32
[0.23] [0.21] [-1.60] [-1.42] [-1.17] [-1.11]

FF-3-MOM Alpha 0.19 0.19 -0.23 -0.19 -0.19 -0.39
[0.67] [0.86] [-1.38] [-1.35] [-1.21] [-1.36]

FF-5-MOM Alpha 0.45 0.43∗∗ -0.03 -0.07 -0.04 −0.49∗

[1.61] [2.00] [-0.16] [-0.50] [-0.28] [-1.70]

avg Ż -1.30 -0.73 -0.32 0.13 0.89
avg. BM ratio 1.40 0.92 0.69 0.54 0.42

avg. ME 0.04 0.12 0.30 0.80 7.78
avg. Monthly Vol 1.20 2.84 6.93 15.39 73.43

persistence 0.53 0.56 0.59 0.60 0.55

Panel 3 Mean 0.51 0.73 0.78 0.78 0.82∗ 0.31
τ̂ 3 [1.08] [1.48] [1.50] [1.53] [1.77] [1.29]

CAPM Alpha -0.17 -0.09 -0.12 -0.13 -0.03 0.14
[-0.61] [-0.41] [-0.55] [-0.76] [-0.21] [0.54]

FF-3-MOM Alpha -0.06 0.06 0.05 -0.01 0.00 0.06
[-0.26] [0.38] [0.38] [-0.08] [0.01] [0.26]

FF-5-MOM Alpha 0.15 0.09 0.14 0.00 0.03 -0.12
[0.65] [0.62] [1.10] [-0.04] [0.26] [-0.50]

avg Ż -0.94 -0.31 0.12 0.56 1.33
avg. BM ratio 1.14 0.76 0.62 0.50 0.43

avg. ME 0.10 0.33 0.84 2.12 18.84
avg. Monthly Vol 1.55 4.39 9.80 20.77 85.27

persistence 0.58 0.55 0.55 0.51 0.44

Panel 4 Mean 0.55 0.70 0.85∗ 0.70 0.66∗ 0.12
τ̂ 4 [1.18] [1.43] [1.82] [1.58] [1.67] [0.55]

CAPM Alpha -0.18 -0.15 0.01 -0.12 -0.10 0.08
[-0.77] [-0.68] [0.03] [-0.89] [-1.28] [0.36]

FF-3-MOM Alpha -0.05 0.04 0.17∗∗ -0.02 -0.07 -0.02
[-0.28] [0.32] [1.97] [-0.18] [-0.98] [-0.12]

FF-5-MOM Alpha 0.11 0.09 0.17∗ -0.05 -0.10 -0.21
[0.63] [0.79] [1.90] [-0.49] [-1.34] [-1.17]

avg Ż -0.69 -0.06 0.36 0.79 1.58
avg. BM ratio 1.00 0.68 0.56 0.48 0.44

avg. ME 0.16 0.50 1.20 2.99 26.36
avg. Monthly Vol 1.69 4.79 10.46 22.43 100.02

persistence 0.54 0.54 0.50 0.48 0.44

Panel 5 Mean 0.68 0.86∗ 0.89∗∗ 0.86∗∗ 0.78∗∗ 0.11
τ̂ 5 [1.53] [1.92] [2.10] [2.14] [2.20] [0.45]

CAPM Alpha -0.05 0.04 0.09 0.10 0.08 0.13
[-0.23] [0.22] [0.62] [0.83] [0.93] [0.55]

FF-3-MOM Alpha 0.09 0.23∗∗ 0.20∗ 0.14 0.09 0.00
[0.56] [2.00] [1.92] [1.29] [1.01] [-0.01]

FF-5-MOM Alpha 0.11 0.15 0.19∗ 0.12 0.05 -0.05
[0.67] [1.34] [1.71] [1.10] [0.61] [-0.30]

avg Ż -0.51 0.15 0.58 1.03 1.79
avg. BM ratio 0.95 0.69 0.57 0.50 0.44

avg. ME 0.29 0.99 2.33 5.97 42.97
avg. Monthly Vol 3.76 7.90 15.65 31.39 106.42

persistence 0.45 0.43 0.39 0.34 0.28

Table D.4: Detailed long-short test results restricted to different τ̂ quintiles for size as the treat-
ment. We calculate average equal weighted returns of portfolios sorted based on treatment but
restricted to each τ quintile. We also report alpha and additional information about each portfo-
lio. Return and alpha numbers are monthly in percentage. Inside square brackets are t-stats with
Newey-West standard errors. One, two and three stars represent significance level 10%, 5%, and 1%
respectively.
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Ż 1 Ż 2 Ż 3 Ż 4 Ż 5 P5 − P1
Panel 1 Mean 1.57∗ 0.75∗ 0.87∗∗ 0.90∗∗∗ 0.96∗∗ -0.61

τ̂ 1 [1.85] [1.66] [2.39] [2.87] [2.44] [-0.87]
CAPM Alpha 0.55 -0.01 0.19 0.27∗∗ 0.26 -0.29

[1.00] [-0.03] [1.60] [2.16] [1.23] [-0.51]
FF-3-MOM Alpha 0.92∗∗ 0.16 0.27∗∗∗ 0.30∗∗∗ 0.27∗ −0.66∗

[2.20] [1.12] [3.04] [2.62] [1.66] [-1.67]
FF-5-MOM Alpha 1.37∗∗∗ 0.20 0.26∗∗∗ 0.26∗∗ 0.24 −1.12∗∗

[2.72] [1.29] [2.81] [2.44] [1.41] [-2.48]

avg Ż -1.01 -0.34 -0.05 0.21 0.83
avg. BM ratio 2.00 0.79 0.61 0.53 0.45

avg. ME 4.82 16.86 21.18 23.15 19.78
avg. Monthly Vol 42.33 56.88 56.26 55.77 50.30

persistence 0.36 0.50 0.55 0.52 0.36

Panel 2 Mean 0.84 0.83∗ 0.94∗∗ 0.77∗∗ 0.76∗ -0.08
τ̂ 2 [1.18] [1.73] [2.42] [2.02] [1.84] [-0.15]

CAPM Alpha -0.18 0.01 0.22 0.06 0.01 0.18
[-0.48] [0.04] [1.53] [0.43] [0.03] [0.44]

FF-3-MOM Alpha 0.09 0.17 0.35∗∗∗ 0.14 0.02 -0.06
[0.40] [1.59] [3.97] [1.46] [0.21] [-0.32]

FF-5-MOM Alpha 0.23 0.14 0.34∗∗∗ 0.13 0.04 -0.19
[1.00] [1.34] [3.99] [1.34] [0.33] [-0.90]

avg Ż -0.78 -0.29 -0.03 0.26 0.99
avg. BM ratio 1.25 0.69 0.60 0.53 0.42

avg. ME 2.59 3.96 4.81 5.42 5.49
avg. Monthly Vol 36.39 26.69 25.58 25.70 31.48

persistence 0.49 0.60 0.64 0.60 0.46

Panel 3 Mean 0.71 0.88∗ 1.01∗∗ 0.87∗∗ 0.74 0.03
τ̂ 3 [1.02] [1.82] [2.37] [2.09] [1.58] [0.06]

CAPM Alpha -0.31 0.06 0.24 0.13 -0.08 0.22
[-0.76] [0.28] [1.47] [0.79] [-0.39] [0.50]

FF-3-MOM Alpha -0.06 0.21∗ 0.37∗∗∗ 0.23∗∗ -0.03 0.03
[-0.28] [1.79] [3.14] [1.99] [-0.20] [0.13]

FF-5-MOM Alpha 0.02 0.24∗∗ 0.41∗∗∗ 0.28∗∗ 0.00 -0.02
[0.07] [2.05] [3.52] [2.54] [0.00] [-0.07]

avg Ż -0.89 -0.35 -0.05 0.28 1.19
avg. BM ratio 1.26 0.74 0.65 0.56 0.42

avg. ME 1.03 1.54 1.92 1.99 2.07
avg. Monthly Vol 21.93 18.05 15.80 16.22 19.31

persistence 0.55 0.64 0.66 0.64 0.51

Panel 4 Mean 0.34 0.54 0.73 0.77∗ 0.70 0.36
τ̂ 4 [0.41] [0.91] [1.42] [1.68] [1.34] [0.64]

CAPM Alpha −0.76∗ -0.40 -0.13 -0.03 -0.18 0.58
[-1.66] [-1.47] [-0.60] [-0.14] [-0.70] [1.25]

FF-3-MOM Alpha -0.51 -0.21 0.00 0.05 -0.21 0.30
[-1.63] [-1.15] [-0.02] [0.39] [-1.22] [1.07]

FF-5-MOM Alpha -0.33 -0.10 0.07 0.13 -0.07 0.26
[-1.05] [-0.59] [0.49] [0.93] [-0.44] [0.86]

avg Ż -1.09 -0.51 -0.13 0.30 1.49
avg. BM ratio 1.18 0.78 0.67 0.57 0.39

avg. ME 0.52 0.87 1.00 1.16 1.24
avg. Monthly Vol 20.60 16.19 13.84 13.49 17.99

persistence 0.53 0.67 0.71 0.68 0.52

Panel 5 Mean -0.17 0.12 0.35 0.50 0.41 0.57
τ̂ 5 [-0.20] [0.19] [0.65] [1.01] [0.78] [1.08]

CAPM Alpha −1.24∗∗ −0.83∗∗ −0.48∗ -0.29 -0.44 0.80∗

[-2.31] [-2.37] [-1.71] [-1.11] [-1.50] [1.72]
FF-3-MOM Alpha −1.02∗∗ −0.66∗∗ -0.36 -0.19 −0.43∗∗ 0.59∗

[-2.45] [-2.39] [-1.63] [-0.96] [-2.06] [1.76]
FF-5-MOM Alpha −0.70∗ -0.40 -0.17 -0.02 -0.18 0.53

[-1.65] [-1.61] [-0.81] [-0.10] [-1.00] [1.43]

avg Ż -1.24 -0.65 -0.24 0.22 1.54
avg. BM ratio 1.33 0.87 0.74 0.63 0.44

avg. ME 0.22 0.46 0.58 0.64 0.63
avg. Monthly Vol 16.38 10.89 8.84 8.91 13.69

persistence 0.42 0.61 0.66 0.64 0.42

Table D.5: Detailed long-short test results restricted to different τ̂ quintiles for momentum as
the treatment. We calculate average equal weighted returns of portfolios sorted based on treatment
but restricted to each τ quintile. We also report alpha and additional information about each
portfolio. Return and alpha numbers are monthly in percentage. Inside square brackets are t-stats
with Newey-West standard errors. One, two and three stars represent significance level 10%, 5%,
and 1% respectively.
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full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.25 0.33 0.56 0.08 0.01 0.43 0.10

[0.99] [0.83] [1.41] [0.40] [0.04] [1.55] [0.36]
CAPM Alpha 0.29 0.34 0.67∗ 0.13 0.07 0.44 0.10

[1.13] [0.87] [1.75] [0.61] [0.27] [1.59] [0.36]
FF-3-MOM Alpha 0.49∗∗∗ 0.58∗∗ 0.83∗∗ 0.27∗∗ 0.23 0.64∗∗∗ 0.06

[3.04] [1.97] [2.47] [1.98] [1.16] [3.12] [0.24]
FF-5-MOM Alpha 0.39∗∗ 0.38 0.64∗ 0.20 0.19 0.63∗∗∗ 0.25

[2.30] [1.23] [1.86] [1.51] [0.91] [2.83] [0.94]

τ 25% -0.09 -0.26 -0.09 -0.04 0.00 0.04
τ 50% -0.03 -0.17 -0.08 -0.03 0.01 0.07
τ 75% 0.01 -0.13 -0.06 -0.02 0.02 0.13
avg τ -0.04 -0.23 -0.08 -0.03 0.01 0.11
sd τ 0.17 0.19 0.02 0.01 0.01 0.12

avg Ż -0.69 -0.66 -0.72 -0.74 -0.72 -0.68

avg Ż in 1st quintile -1.98 -2.05 -1.96 -1.95 -1.95 -2.01

avg Ż in 5th quintile 0.38 0.55 0.29 0.22 0.24 0.42

avg Ż P5 - P1 2.36 2.60 2.25 2.17 2.19 2.44

number of stocks 3536.90 810.88 639.92 734.91 679.13 928.43
avg. BM ratio 0.84 1.12 0.71 0.65 0.69 0.95

avg. ME 5.08 1.26 2.37 3.68 7.43 9.61
avg. Monthly Vol 25.27 18.34 17.03 18.64 25.10 40.97

persistence 0.48 0.31 0.39 0.40 0.51

Table D.6: Long-short of long-short test results for value as the treatment
using equal weighting (τ model trained with top 3 ex-post most important
features). We apply our R-learner procedure to cross-sectionally standardized data:
all variables have mean 0 and standard deviation 1 during each month. m and e
models are trained the same way as before while for τ model, we take the ex-post top3
features according to Table 4.6 and only include those three features in the training
of τ model. In the top panel, we calculate the average returns and alphas of P5-P1
long-short trading strategies based on treatment variable book-to-market ratios but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.15 -1.00 0.28 -0.07 -0.02 0.32 1.32∗∗

[0.43] [-1.62] [0.83] [-0.28] [-0.10] [1.43] [2.39]
CAPM Alpha 0.14 −1.33∗∗ 0.08 -0.22 -0.19 0.17 1.49∗∗∗

[0.40] [-2.10] [0.22] [-0.90] [-0.78] [0.73] [2.64]
FF-3-MOM Alpha 0.03 −1.29∗∗ 0.03 -0.30 -0.23 0.11 1.40∗∗∗

[0.11] [-2.22] [0.08] [-1.25] [-0.98] [0.54] [2.61]
FF-5-MOM Alpha -0.24 −1.52∗∗ -0.25 −0.42∗ −0.41∗∗ -0.04 1.47∗∗

[-0.75] [-2.24] [-0.71] [-1.73] [-2.00] [-0.22] [2.31]

τ 25% -0.27 -0.64 -0.27 -0.12 -0.07 -0.02
τ 50% -0.10 -0.49 -0.22 -0.11 -0.06 0.00
τ 75% -0.05 -0.40 -0.17 -0.09 -0.05 0.02
avg τ -0.19 -0.56 -0.22 -0.11 -0.06 0.01
sd τ 0.24 0.27 0.06 0.02 0.01 0.06

avg Ż 0.00 -0.72 -0.16 0.17 0.31 0.41

avg Ż in 1st quintile -1.35 -1.80 -1.34 -1.07 -0.96 -0.90

avg Ż in 5th quintile 1.43 0.50 1.06 1.45 1.62 1.78

avg Ż P5 - P1 2.78 2.30 2.40 2.52 2.58 2.67

number of stocks 3902.94 782.83 770.19 753.90 792.95 803.07
avg. BM ratio 0.77 1.27 0.70 0.63 0.62 0.61

avg. ME 4.74 0.65 2.20 4.84 6.51 9.32
avg. Monthly Vol 24.65 22.40 21.65 24.11 26.15 28.60

persistence 0.61 0.36 0.30 0.33 0.45

Table D.7: Long-short of long-short test results for size as the treatment
using equal weighting (τ model trained with top 3 ex-post most important
features). We apply our R-learner procedure to cross-sectionally standardized data:
all variables have mean 0 and standard deviation 1 during each month. m and e
models are trained the same way as before while for τ model, we take the ex-post
top3 features according to Table 4.7 and only include those three features in the
training of τ model. In the top panel, we calculate the average returns and alphas
of P5-P1 long-short trading strategies based on treatment variable firm sizes but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.16 -0.98 0.20 -0.08 0.63 0.59 1.57∗∗∗

[0.29] [-1.62] [0.44] [-0.18] [1.12] [1.04] [4.30]
CAPM Alpha 0.40 -0.73 0.39 0.03 0.83∗ 0.82∗ 1.55∗∗∗

[0.90] [-1.38] [0.93] [0.07] [1.74] [1.67] [4.19]
FF-3-MOM Alpha 0.14 −0.99∗∗∗ 0.22 -0.15 0.48∗ 0.54 1.53∗∗∗

[0.60] [-2.66] [0.80] [-0.57] [1.78] [1.57] [4.04]
FF-5-MOM Alpha -0.03 −1.27∗∗∗ 0.00 -0.24 0.48∗ 0.43 1.69∗∗∗

[-0.12] [-3.05] [0.01] [-0.92] [1.68] [1.12] [4.14]

τ 25% -0.04 -0.08 -0.04 -0.02 -0.02 -0.01
τ 50% -0.02 -0.07 -0.03 -0.02 -0.02 -0.01
τ 75% -0.01 -0.05 -0.03 -0.02 -0.01 0.00
avg τ -0.03 -0.08 -0.03 -0.02 -0.02 0.00
sd τ 0.05 0.07 0.01 0.00 0.00 0.03

avg Ż -0.01 -0.01 0.04 0.04 -0.02 -0.13

avg Ż in 1st quintile -1.05 -0.94 -0.73 -0.84 -1.07 -1.30

avg Ż in 5th quintile 1.23 0.84 0.96 1.15 1.39 1.60

avg Ż P5 - P1 2.28 1.78 1.69 1.99 2.46 2.90

number of stocks 3681.14 776.09 653.47 711.77 703.79 908.87
avg. BM ratio 0.77 0.78 0.67 0.70 0.83 0.88

avg. ME 4.96 19.49 2.12 1.23 0.77 0.51
avg. Monthly Vol 25.54 61.56 17.02 14.41 16.20 15.23

persistence 0.79 0.49 0.44 0.40 0.58

Table D.8: Long-short of long-short test results for momentum as the treat-
ment using equal weighting (τ model trained with top 3 ex-post most
important features). We apply our R-learner procedure to cross-sectionally stan-
dardized data: all variables have mean 0 and standard deviation 1 during each month.
m and e models are trained the same way as before while for τ model, we take the ex-
post top3 features according to Table 4.8 and only include those three features in the
training of τ model. In the top panel, we calculate the average returns and alphas of
P5-P1 long-short trading strategies based on treatment variable trailing returns but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
all equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.25 0.33 -0.21 -0.13 0.21 0.17 -0.16

[0.99] [0.89] [-0.56] [-0.53] [0.94] [0.53] [-0.49]
CAPM Alpha 0.29 0.36 -0.17 -0.03 0.27 0.22 -0.14

[1.13] [0.97] [-0.45] [-0.11] [1.19] [0.66] [-0.42]
FF-3-MOM Alpha 0.49∗∗∗ 0.57∗ -0.09 0.07 0.41∗∗ 0.41∗ -0.15

[3.04] [1.80] [-0.25] [0.34] [2.41] [1.71] [-0.46]
FF-5-MOM Alpha 0.39∗∗ 0.23 -0.25 0.02 0.34∗∗ 0.32 0.09

[2.30] [0.72] [-0.68] [0.13] [2.07] [1.27] [0.25]

τ 25% -0.08 -0.26 -0.08 -0.04 -0.01 0.04
τ 50% -0.04 -0.16 -0.07 -0.03 -0.01 0.07
τ 75% 0.00 -0.11 -0.06 -0.03 0.01 0.15
avg τ -0.04 -0.23 -0.07 -0.03 0.00 0.13
sd τ 0.17 0.21 0.01 0.01 0.01 0.16

avg Ż -0.69 -0.59 -0.59 -0.65 -0.74 -0.84

avg Ż in 1st quintile -1.98 -2.00 -1.74 -1.72 -1.84 -2.34

avg Ż in 5th quintile 0.38 0.57 0.33 0.24 0.20 0.46

avg Ż P5 - P1 2.36 2.57 2.07 1.96 2.04 2.80

number of stocks 3536.90 716.89 618.70 693.51 790.39 863.61
avg. BM ratio 0.84 1.23 0.76 0.69 0.63 0.88

avg. ME 5.08 1.61 3.30 4.24 6.40 8.74
avg. Monthly Vol 25.27 22.56 16.53 19.26 25.90 38.17

persistence 0.66 0.49 0.51 0.55 0.71

Table D.9: Long-short of long-short test results for value as the treatment
using equal weighting (τ model trained with top 10 ex-post most important
features). We apply our R-learner procedure to cross-sectionally standardized data:
all variables have mean 0 and standard deviation 1 during each month. m and e
models are trained the same way as before while for τ model, we take the ex-post top
10 features according to Table 4.6 and only include those three features in the training
of τ model. In the top panel, we calculate the average returns and alphas of P5-P1
long-short trading strategies based on treatment variable book-to-market ratios but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.15 −1.46∗∗ -0.03 0.00 0.14 0.17 1.63∗∗∗

[0.43] [-2.46] [-0.08] [-0.02] [0.59] [0.70] [2.78]
CAPM Alpha 0.14 −1.72∗∗∗ -0.23 -0.20 0.11 0.17 1.89∗∗∗

[0.40] [-2.78] [-0.65] [-0.76] [0.43] [0.73] [3.08]
FF-3-MOM Alpha 0.03 −1.75∗∗∗ -0.30 -0.23 0.03 0.07 1.82∗∗∗

[0.11] [-3.12] [-0.90] [-0.93] [0.13] [0.34] [3.24]
FF-5-MOM Alpha -0.24 −1.94∗∗∗ -0.46 −0.47∗∗ -0.16 0.02 1.96∗∗∗

[-0.75] [-3.05] [-1.34] [-2.03] [-0.82] [0.09] [3.16]

τ 25% -0.35 -0.82 -0.35 -0.19 -0.07 0.01
τ 50% -0.16 -0.62 -0.29 -0.16 -0.05 0.04
τ 75% -0.03 -0.51 -0.25 -0.14 -0.03 0.08
avg τ -0.24 -0.72 -0.30 -0.16 -0.05 0.05
sd τ 0.31 0.32 0.06 0.03 0.03 0.06

avg Ż 0.00 -0.85 -0.25 0.14 0.41 0.56

avg Ż in 1st quintile -1.35 -1.85 -1.27 -0.93 -0.70 -0.55

avg Ż in 5th quintile 1.43 0.35 0.90 1.31 1.62 1.78

avg Ż P5 - P1 2.78 2.20 2.17 2.24 2.32 2.33

number of stocks 3902.94 781.37 775.69 779.41 778.32 788.15
avg. BM ratio 0.77 1.10 0.76 0.69 0.63 0.67

avg. ME 4.74 0.70 1.90 4.41 6.53 10.06
avg. Monthly Vol 24.65 18.20 18.03 23.04 29.67 34.04

persistence 0.67 0.46 0.47 0.48 0.63

Table D.10: Long-short of long-short test results for size as the treatment
using equal weighting (τ model trained with top 10 ex-post most important
features). We apply our R-learner procedure to cross-sectionally standardized data:
all variables have mean 0 and standard deviation 1 during each month. m and e
models are trained the same way as before while for τ model, we take the ex-post
top 10 features according to Table 4.7 and only include those three features in the
training of τ model. In the top panel, we calculate the average returns and alphas
of P5-P1 long-short trading strategies based on treatment variable firm sizes but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.16 -0.52 0.42 0.05 0.40 0.45 0.96∗∗

[0.29] [-0.77] [0.82] [0.09] [0.69] [0.84] [2.25]
CAPM Alpha 0.40 -0.23 0.72∗ 0.33 0.57 0.66 0.89∗∗

[0.90] [-0.39] [1.73] [0.71] [1.15] [1.43] [2.14]
FF-3-MOM Alpha 0.14 -0.49 0.48∗∗ 0.01 0.39 0.45 0.94∗∗

[0.60] [-1.17] [2.02] [0.05] [1.33] [1.38] [2.29]
FF-5-MOM Alpha -0.03 −0.93∗∗ 0.45∗ -0.02 0.27 0.30 1.23∗∗∗

[-0.12] [-2.04] [1.84] [-0.08] [0.87] [0.86] [2.77]

τ 25% -0.04 -0.09 -0.04 -0.03 -0.02 0.00
τ 50% -0.02 -0.07 -0.04 -0.02 -0.02 0.00
τ 75% -0.01 -0.06 -0.03 -0.02 -0.01 0.02
avg τ -0.03 -0.09 -0.04 -0.02 -0.02 0.01
sd τ 0.05 0.08 0.01 0.00 0.00 0.03

avg Ż -0.01 -0.06 0.03 0.02 -0.01 -0.06

avg Ż in 1st quintile -1.05 -1.02 -0.83 -0.93 -1.09 -1.18

avg Ż in 5th quintile 1.23 0.87 1.05 1.24 1.43 1.45

avg Ż P5 - P1 2.28 1.89 1.88 2.17 2.52 2.63

number of stocks 3681.14 741.12 722.77 704.21 727.37 823.06
avg. BM ratio 0.77 0.88 0.66 0.72 0.80 0.78

avg. ME 4.96 16.49 4.12 2.12 1.12 1.00
avg. Monthly Vol 25.54 57.92 25.24 17.98 10.79 16.27

persistence 0.78 0.56 0.49 0.52 0.69

Table D.11: Long-short of long-short test results for momentum as the
treatment using equal weighting (τ model trained with top 10 ex-post
most important features) We apply our R-learner procedure to cross-sectionally
standardized data: all variables have mean 0 and standard deviation 1 during each
month. m and e models are trained the same way as before while for τ model,
we take the ex-post top 10 features according to Table 4.8 and only include those
three features in the training of τ model. In the top panel, we calculate the average
returns and alphas of P5-P1 long-short trading strategies based on treatment variable
trailing returns but restricted to each τ̂ quintile. All return and alpha numbers are
from P5-P1 strategy and are monthly in percentage. All portfolios in the P5-P1 long-
short strategies are all equal weighted. t-stats with NW standard errors are inside
square brackets. One, two and three stars represent 10%, 5%, and 1% significance
level respectively. The second panel shows cross-sectional summary statistics for τ̂ .
The third panel presents the spread of treatment variable in the cross section for
all τ̂ quintiles and for the full universe. The bottom panel shows some additional
information about each quintile and the full universe. We include number of stocks,
book-to-market ratios, market equity (ME) in billions of dollars, monthly trading
volume in millions of shares, and persistence defined as the average percentage of
stocks that will remain in the same τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.25 0.56 0.01 0.14 0.09 0.35 -0.22

[0.99] [1.29] [0.04] [0.55] [0.38] [1.13] [-0.53]
CAPM Alpha 0.29 0.52 0.05 0.14 0.12 0.44 -0.09

[1.13] [1.23] [0.17] [0.56] [0.53] [1.41] [-0.21]
FF-3-MOM Alpha 0.49∗∗∗ 0.81∗∗ 0.23 0.34∗∗ 0.28∗ 0.58∗∗ -0.23

[3.04] [2.48] [1.14] [1.98] [1.76] [2.18] [-0.60]
FF-5-MOM Alpha 0.39∗∗ 0.51 0.16 0.33∗ 0.25 0.50∗ -0.01

[2.30] [1.55] [0.78] [1.73] [1.50] [1.84] [-0.03]

τ 25% -0.01 -0.05 -0.01 0.00 0.01 0.03
τ 50% 0.00 -0.03 -0.01 0.00 0.02 0.03
τ 75% 0.02 -0.02 0.00 0.01 0.02 0.05
avg τ 0.00 -0.05 -0.01 0.00 0.02 0.04
sd τ 0.04 0.05 0.00 0.00 0.00 0.03

avg Ż 0.00 0.13 0.05 -0.04 -0.04 -0.08

avg Ż in 1st quintile -1.29 -1.15 -1.10 -1.19 -1.23 -1.61

avg Ż in 5th quintile 1.07 1.24 0.99 0.91 0.95 1.15

avg Ż P5 - P1 2.36 2.39 2.08 2.10 2.18 2.76

number of stocks 3536.90 710.74 701.05 707.78 695.45 721.88
avg. BM ratio 0.84 1.21 0.76 0.68 0.68 0.85

avg. ME 5.08 1.85 3.26 4.70 5.94 9.64
avg. Monthly Vol 25.27 25.95 18.76 19.05 20.88 41.60

persistence 0.71 0.58 0.57 0.61 0.74

Table D.12: Long-short of long-short test results for value as the treatment
using equal weighting with cross-sectionally demeaned variables. We apply
our R-learner procedure to cross-sectionally de-meaned data: all variables have mean
0 during each month. In the top panel, we calculate the average returns and alphas
of P5-P1 long-short trading strategies based on treatment variable book-to-market
ratios but restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1
strategy and are monthly in percentage. All portfolios in the P5-P1 long-short strate-
gies are equal weighted. t-stats with NW standard errors are inside square brackets.
One, two and three stars represent 10%, 5%, and 1% significance level respectively.
The second panel shows cross-sectional summary statistics for τ̂ . The third panel
presents the spread of treatment variable in the cross section for all τ̂ quintiles and
for the full universe. The bottom panel shows some additional information about
each quintile and the full universe. We include number of stocks, book-to-market
ratios, market equity (ME) in billions of dollars, monthly trading volume in millions
of shares, and persistence defined as the average percentage of stocks that will remain
in the same τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.15 −1.19∗∗ 0.54 0.43 0.25 0.67∗∗ 1.86∗∗∗

[0.43] [-2.03] [1.49] [1.47] [0.73] [2.09] [3.52]
CAPM Alpha 0.14 −1.14∗ 0.43 0.43 0.37 0.74∗∗ 1.88∗∗∗

[0.40] [-1.94] [1.19] [1.42] [1.17] [2.27] [3.53]
FF-3-MOM Alpha 0.03 −1.27∗∗ 0.37 0.34 0.20 0.64∗∗ 1.91∗∗∗

[0.11] [-2.52] [1.18] [1.23] [0.73] [2.00] [3.92]
FF-5-MOM Alpha -0.24 −1.42∗∗ 0.16 0.08 0.05 0.51 1.93∗∗∗

[-0.75] [-2.42] [0.53] [0.29] [0.17] [1.51] [3.56]

τ 25% -0.05 -0.09 -0.05 -0.03 -0.01 0.00
τ 50% -0.02 -0.07 -0.04 -0.02 -0.01 0.01
τ 75% 0.00 -0.06 -0.04 -0.02 0.00 0.01
avg τ -0.03 -0.08 -0.04 -0.02 -0.01 0.01
sd τ 0.04 0.04 0.01 0.00 0.00 0.01

avg Ż 0.01 -1.57 -0.16 0.49 0.76 0.51

avg Ż in 1st quintile -2.81 -3.82 -2.59 -1.88 -1.55 -1.61

avg Ż in 5th quintile 2.98 1.08 2.65 2.99 3.12 2.47

avg Ż P5 - P1 5.79 4.90 5.24 4.87 4.67 4.08

number of stocks 3902.94 781.03 780.07 780.57 780.16 781.11
avg. BM ratio 0.77 1.02 0.76 0.70 0.67 0.68

avg. ME 4.74 3.47 5.34 5.31 6.08 3.48
avg. Monthly Vol 24.65 19.12 24.08 25.58 29.52 24.81

persistence 0.76 0.59 0.57 0.61 0.74

Table D.13: Long-short of long-short test results for size as the treatment
using equal weighting with cross-sectionally demeaned variables. We apply
our R-learner procedure to cross-sectionally de-meaned data: all variables have mean
0 during each month. In the top panel, we calculate the average returns and alphas
of P5-P1 long-short trading strategies based on treatment variable firm sizes but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
equal weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.16 -0.35 0.47 0.13 0.44 -0.07 0.28

[0.29] [-0.54] [0.83] [0.25] [0.98] [-0.13] [0.54]
CAPM Alpha 0.40 -0.01 0.72 0.36 0.60 0.15 0.16

[0.90] [-0.02] [1.54] [0.87] [1.52] [0.28] [0.31]
FF-3-MOM Alpha 0.14 -0.33 0.43∗ 0.06 0.39∗ -0.06 0.27

[0.60] [-0.88] [1.83] [0.27] [1.77] [-0.14] [0.54]
FF-5-MOM Alpha -0.03 -0.52 0.28 0.02 0.30 -0.29 0.23

[-0.12] [-1.30] [1.17] [0.09] [1.19] [-0.61] [0.40]

τ 25% 0.00 -0.03 0.00 0.01 0.01 0.02
τ 50% 0.01 -0.02 0.00 0.01 0.02 0.02
τ 75% 0.02 -0.01 0.00 0.01 0.02 0.03
avg τ 0.01 -0.02 0.00 0.01 0.02 0.03
sd τ 0.02 0.03 0.00 0.00 0.00 0.02

avg Ż -0.01 -0.04 0.00 0.02 0.00 -0.01

avg Ż in 1st quintile -0.54 -0.51 -0.48 -0.48 -0.52 -0.61

avg Ż in 5th quintile 0.66 0.47 0.59 0.67 0.69 0.81

avg Ż P5 - P1 1.19 0.98 1.07 1.14 1.21 1.42

number of stocks 3681.14 754.13 691.68 737.34 731.22 766.76
avg. BM ratio 0.77 0.94 0.72 0.70 0.68 0.77

avg. ME 4.96 7.65 6.15 5.63 3.34 2.02
avg. Monthly Vol 25.54 38.38 28.86 25.88 17.70 16.84

persistence 0.86 0.75 0.75 0.73 0.80

Table D.14: Long-short of long-short test results for momentum as the treat-
ment using equal weighting with cross-sectionally demeaned variables. We
apply our R-learner procedure to cross-sectionally de-meaned data: all variables have
mean 0 during each month. In the top panel, we calculate the average returns and
alphas of P5-P1 long-short trading strategies based on treatment variable trailing re-
turns but restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1
strategy and are monthly in percentage. All portfolios in the P5-P1 long-short strate-
gies are equal weighted. t-stats with NW standard errors are inside square brackets.
One, two and three stars represent 10%, 5%, and 1% significance level respectively.
The second panel shows cross-sectional summary statistics for τ̂ . The third panel
presents the spread of treatment variable in the cross section for all τ̂ quintiles and
for the full universe. The bottom panel shows some additional information about
each quintile and the full universe. We include number of stocks, book-to-market
ratios, market equity (ME) in billions of dollars, monthly trading volume in millions
of shares, and persistence defined as the average percentage of stocks that will remain
in the same τ̂ quintile in the next month.
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full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean -0.29 −1.03∗∗ -0.21 0.25 -0.07 0.01 1.04∗

[-0.99] [-2.29] [-0.77] [0.90] [-0.27] [0.02] [1.95]
CAPM Alpha -0.45 −1.18∗∗∗ -0.27 0.17 -0.15 -0.13 1.04∗

[-1.59] [-2.72] [-0.99] [0.59] [-0.56] [-0.26] [1.86]
FF-3-MOM Alpha -0.19 −0.84∗∗∗ -0.08 0.33 0.03 0.18 1.02∗

[-1.20] [-2.59] [-0.41] [1.40] [0.15] [0.43] [1.79]
FF-5-MOM Alpha -0.04 −1.08∗∗∗ -0.23 0.40∗ -0.08 0.31 1.38∗∗

[-0.29] [-3.17] [-1.05] [1.79] [-0.40] [0.75] [2.48]

τ 25% -0.08 -0.22 -0.08 -0.03 0.01 0.07
τ 50% -0.02 -0.14 -0.07 -0.02 0.02 0.11
τ 75% 0.03 -0.11 -0.05 -0.01 0.03 0.18
avg τ -0.02 -0.20 -0.07 -0.02 0.02 0.15
sd τ 0.17 0.19 0.01 0.01 0.01 0.14

avg Ż -0.69 -0.63 -0.69 -0.72 -0.71 -0.69

avg Ż in 1st quintile -1.98 -1.94 -1.89 -1.87 -1.89 -2.23

avg Ż in 5th quintile 0.38 0.46 0.27 0.25 0.30 0.54

avg Ż P5 - P1 2.36 2.40 2.15 2.11 2.19 2.77

number of stocks 3536.90 734.32 656.14 718.12 708.52 719.81
avg. BM ratio 0.84 1.17 0.69 0.66 0.68 0.97

avg. ME 5.08 3.88 5.11 5.38 4.39 6.52
avg. Monthly Vol 25.27 27.87 23.76 23.60 19.82 31.05

persistence 0.73 0.62 0.60 0.63 0.73

Table D.15: Long-short of long-short test results for value as the treatment
using value weighting. We apply our R-learner procedure to cross-sectionally
standardized data: all variables have mean 0 and standard deviation 1 during each
month. In the top panel, we calculate the average returns and alphas of P5-P1
long-short trading strategies based on treatment variable book-to-market ratios but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
value weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.42 -0.94 0.06 0.33 0.19 -0.04 0.89

[1.17] [-1.62] [0.19] [1.31] [0.76] [-0.15] [1.44]
CAPM Alpha 0.47 −1.15∗ -0.22 0.23 0.25 0.07 1.22∗

[1.37] [-1.95] [-0.67] [0.86] [0.97] [0.29] [1.95]
FF-3-MOM Alpha 0.34 −1.24∗∗ -0.30 0.11 0.10 -0.09 1.14∗

[1.20] [-2.23] [-0.97] [0.46] [0.52] [-0.48] [1.88]
FF-5-MOM Alpha 0.08 −1.28∗∗ -0.38 0.00 -0.07 -0.09 1.19∗

[0.28] [-2.05] [-1.18] [-0.02] [-0.40] [-0.51] [1.82]

τ 25% -0.32 -0.79 -0.32 -0.16 -0.05 0.03
τ 50% -0.13 -0.60 -0.26 -0.13 -0.03 0.05
τ 75% -0.01 -0.47 -0.22 -0.10 -0.01 0.07
avg τ -0.21 -0.68 -0.27 -0.13 -0.03 0.06
sd τ 0.30 0.31 0.06 0.03 0.02 0.04

avg Ż 0.00 -0.88 -0.27 0.15 0.40 0.61

avg Ż in 1st quintile -1.35 -1.86 -1.30 -0.94 -0.69 -0.51

avg Ż in 5th quintile 1.43 0.31 0.89 1.33 1.58 1.79

avg Ż P5 - P1 2.78 2.17 2.19 2.26 2.28 2.30

number of stocks 3902.94 781.07 777.73 780.65 777.88 785.61
avg. BM ratio 0.77 1.09 0.79 0.69 0.63 0.63

avg. ME 4.74 0.60 1.81 4.44 6.24 10.51
avg. Monthly Vol 24.65 17.78 19.96 24.36 27.88 33.03

persistence 0.71 0.51 0.54 0.56 0.71

Table D.16: Long-short of long-short test results for size as the treatment
using value weighting. We apply our R-learner procedure to cross-sectionally
standardized data: all variables have mean 0 and standard deviation 1 during each
month. In the top panel, we calculate the average returns and alphas of P5-P1 long-
short trading strategies based on treatment variable firm sizes but restricted to each
τ̂ quintile. All return and alpha numbers are from P5-P1 strategy and are monthly
in percentage. All portfolios in the P5-P1 long-short strategies are value weighted.
t-stats with NW standard errors are inside square brackets. One, two and three
stars represent 10%, 5%, and 1% significance level respectively. The second panel
shows cross-sectional summary statistics for τ̂ . The third panel presents the spread
of treatment variable in the cross section for all τ̂ quintiles and for the full universe.
The bottom panel shows some additional information about each quintile and the full
universe. We include number of stocks, book-to-market ratios, market equity (ME)
in billions of dollars, monthly trading volume in millions of shares, and persistence
defined as the average percentage of stocks that will remain in the same τ̂ quintile in
the next month.
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Full τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5− 1
Mean 0.37 0.36 0.34 -0.05 0.28 0.59 0.24

[0.64] [0.51] [0.64] [-0.07] [0.41] [1.20] [0.43]
CAPM Alpha 0.77∗ 0.72 0.68 0.22 0.58 0.76∗ 0.04

[1.73] [1.24] [1.44] [0.41] [1.02] [1.65] [0.08]
FF-3-MOM Alpha 0.43∗∗ 0.31 0.46 -0.15 0.14 0.52 0.21

[2.45] [0.85] [1.18] [-0.53] [0.43] [1.41] [0.42]
FF-5-MOM Alpha 0.23 -0.07 0.31 -0.24 0.19 0.50 0.57

[1.34] [-0.18] [0.92] [-0.87] [0.55] [1.31] [1.16]

τ 25% -0.05 -0.17 -0.05 -0.03 -0.01 0.01
τ 50% -0.02 -0.11 -0.04 -0.02 0.00 0.02
τ 75% 0.00 -0.08 -0.04 -0.02 0.00 0.03
avg τ -0.04 -0.14 -0.04 -0.02 -0.01 0.02
sd τ 0.08 0.10 0.01 0.00 0.00 0.03

avg Ż -0.01 -0.07 0.03 0.04 0.01 -0.07

avg Ż in 1st quintile -1.05 -1.01 -0.78 -0.89 -1.09 -1.24

avg Ż in 5th quintile 1.23 0.83 0.99 1.19 1.49 1.54

avg Ż P5 - P1 2.28 1.84 1.78 2.08 2.58 2.78

number of stocks 3681.14 739.86 706.92 754.83 708.25 771.28
avg. BM ratio 0.77 0.88 0.70 0.73 0.72 0.80

avg. ME 4.96 17.16 4.45 1.71 0.96 0.51
avg. Monthly Vol 25.54 52.31 29.17 18.26 16.42 11.74

persistence 0.85 0.72 0.66 0.61 0.73

Table D.17: Long-short of long-short test results for momentum as the
treatment using value weighting. We apply our R-learner procedure to cross-
sectionally standardized data: all variables have mean 0 and standard deviation 1
during each month. In the top panel, we calculate the average returns and alphas of
P5-P1 long-short trading strategies based on treatment variable trailing returns but
restricted to each τ̂ quintile. All return and alpha numbers are from P5-P1 strategy
and are monthly in percentage. All portfolios in the P5-P1 long-short strategies are
all value weighted. t-stats with NW standard errors are inside square brackets. One,
two and three stars represent 10%, 5%, and 1% significance level respectively. The
second panel shows cross-sectional summary statistics for τ̂ . The third panel presents
the spread of treatment variable in the cross section for all τ̂ quintiles and for the full
universe. The bottom panel shows some additional information about each quintile
and the full universe. We include number of stocks, book-to-market ratios, market
equity (ME) in billions of dollars, monthly trading volume in millions of shares, and
persistence defined as the average percentage of stocks that will remain in the same
τ̂ quintile in the next month.
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τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5-1
training 0.00 0.88∗∗ 1.34∗∗∗ 1.86∗∗∗ 1.73∗∗∗ 1.72∗∗

[0.01] [2.00] [2.67] [3.83] [2.96] [2.56]
test oneshot 0.06 0.05 -0.07 -0.21 0.56∗ 0.50

[0.17] [0.17] [-0.30] [-0.70] [1.75] [1.50]
test rolling -0.06 -0.16 0.26 0.18 0.71∗∗ 0.77∗∗

[-0.14] [-0.65] [1.15] [0.77] [2.15] [2.17]

Table D.18: Long-short of long-short test results for value as the treatment:
training vs. test set. We apply our R-learner procedure to cross-sectionally stan-
dardized data: all variables have mean 0 and standard deviation 1 during each month.
For the first two rows “training”, we calculate the average returns of P5-P1 long-short
trading strategies restricted to each τ̂ quintile, for the period of the first rolling window
for training (199601-200512). The τ̂ quintiles used in forming long-short of long-short
strategies are determined by one τ model fitted using data in the same time window
(199601-200512). For the third and fourth rows, “test oneshot”, we repeat the same
calculation for our entire out-of-sample test period 200601-201812 and τ̂ quintiles are
determined by one single τ model trained from only the first rolling window 199601-
200512. For the last two rows, “test rolling”, we repeat the calculations using the
same method as in our main results: the average returns of long-short of long-short
strategies are calculated for our out-of-sample test period 200601-201812 with annual
refittings using the previous 10 years as training data. For each year in the test
period, τ̂ quintiles are determined by a τ model trained using the 10-year rolling
window before the current year. All return numbers are monthly in percentage. All
portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW
standard errors are inside square brackets. One, two and three stars represent 10%,
5%, and 1% significance level respectively.
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τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5-1
train −4.99∗∗∗ −1.43∗∗ -0.09 -0.03 -0.63 4.35∗∗∗

[-5.23] [-2.55] [-0.18] [-0.05] [-1.06] [5.80]
test oneshot -0.90 -0.11 -0.12 0.05 0.02 0.93

[-1.43] [-0.32] [-0.44] [0.17] [0.08] [1.62]
test rolling −1.43∗∗ -0.04 0.31 0.12 0.11 1.54∗∗∗

[-2.48] [-0.12] [1.29] [0.55] [0.45] [2.60]

Table D.19: Long-short of long-short test results for size as the treatment:
training vs. test set. We apply our R-learner procedure to cross-sectionally stan-
dardized data: all variables have mean 0 and standard deviation 1 during each month.
For the first two rows “training”, we calculate the average returns of P5-P1 long-short
trading strategies restricted to each τ̂ quintile, for the period of the first rolling window
for training (199601-200512). The τ̂ quintiles used in forming long-short of long-short
strategies are determined by one τ model fitted using data in the same time window
(199601-200512). For the third and fourth rows, “test oneshot”, we repeat the same
calculation for our entire out-of-sample test period 200601-201812 and τ̂ quintiles are
determined by one single τ model trained from only the first rolling window 199601-
200512. For the last two rows, “test rolling”, we repeat the calculations using the
same method as in our main results: the average returns of long-short of long-short
strategies are calculated for our out-of-sample test period 200601-201812 with annual
refittings using the previous 10 years as training data. For each year in the test
period, τ̂ quintiles are determined by a τ model trained using the 10-year rolling
window before the current year. All return numbers are monthly in percentage. All
portfolios in the P5-P1 long-short strategies are equal weighted. t-stats with NW
standard errors are inside square brackets. One, two and three stars represent 10%,
5%, and 1% significance level respectively.
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τ̂ 1 τ̂ 2 τ̂ 3 τ̂ 4 τ̂ 5 5-1
train −3.31∗∗∗ 0.48 1.50∗∗ 1.45∗∗ 1.84∗∗ 5.15∗∗∗

[-3.34] [0.81] [2.43] [1.99] [2.09] [7.13]
test oneshot -0.52 0.31 0.60 0.01 0.18 0.69

[-0.75] [0.60] [1.17] [0.01] [0.36] [1.63]
test rolling -0.61 -0.08 0.03 0.36 0.57 1.18∗∗∗

[-0.87] [-0.15] [0.06] [0.64] [1.08] [2.72]

Table D.20: Long-short of long-short test results for momentum as the
treatment: training vs. test set. We apply our R-learner procedure to cross-
sectionally standardized data: all variables have mean 0 and standard deviation 1
during each month. For the first two rows “training”, we calculate the average returns
of P5-P1 long-short trading strategies restricted to each τ̂ quintile, for the period of
the first rolling window for training (199601-200512). The τ̂ quintiles used in forming
long-short of long-short strategies are determined by one τ model fitted using data
in the same time window (199601-200512). For the third and fourth rows, “test
oneshot”, we repeat the same calculation for our entire out-of-sample test period
200601-201812 and τ̂ quintiles are determined by one single τ model trained from
only the first rolling window 199601-200512. For the last two rows, “test rolling”, we
repeat the calculations using the same method as in our main results: the average
returns of long-short of long-short strategies are calculated for our out-of-sample test
period 200601-201812 with annual refittings using the previous 10 years as training
data. For each year in the test period, τ̂ quintiles are determined by a τ model
trained using the 10-year rolling window before the current year. All return numbers
are monthly in percentage. All portfolios in the P5-P1 long-short strategies are equal
weighted. t-stats with NW standard errors are inside square brackets. One, two and
three stars represent 10%, 5%, and 1% significance level respectively.
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